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Prediction and understanding of the thermodynamic properties and kinetics of phase transitions in molecular
systems depends on tuning intermolecular interactions such that the desired structures are assembled. These
interactions can depend on the solvent temperature and composition and are difficult to determine in an a
priori manner. This is especially true for large and complex molecules and nanoparticles with functionalized
surfaces. Here, we demonstrate the use of the pair contribution of the long-time self-diffusivity determined
by pulsed-field gradient spin-echo nuclear magnetic resonance as a probe of these interactions. Materials
with high solubilities have scaled long-time self-diffusivity,D2, values that are close to hard sphere values
and decrease as the solubility decreases. We find a remarkable correlation between solubility andD2 for a
wide range of hydrogen-bonding solutes that crystallize upon quenching solutions from high temperature.
This generalized phase behavior can be understood in terms of the solutes’ interacting with attractive forces
that have an extent that is only a small fraction of their diameters.

I. Introduction

The assembly of useful structures composed of nanoparticles
relies on fine-tuning the interactions between particles. Ordered,
disordered, or heterogeneous structures result from a balancing
of particle and continuous-phase chemical potentials. Spontane-
ous structure formation is the result of the suspension sampling
local and global free energy minima associated with accessible
particle configurations.1-3 Only recently have engineering
methods been developed that enable a priori design of desired
structures and thus go beyond the present largely Edisonian,
intuitive, or high-throughput screening techniques. One of the
first attempts to apply predictive tools comes in the formation
of ordered assemblies, or crystals. Prediction of the onset of
the ordering transition requires knowledge of the particle
interactions derived from ab initio quantum predictions4,5 or
experimental characterization.6-8 The solvent plays an important
role in controlling the strength of interactions, and thus,
solubility is difficult to predict in an a priori manner. As a result,
experimental methods are often sought to understand how
changing solvent composition and temperature will alter the
location of the solubility boundary. To date, determination of
the osmotic second virial coefficient, measured directly by light
scattering9,10or indirectly through chromatographic methods,7,11

has been the main method applied to protein solutions. In this
study, we explore an alternative method of characterizing the
strength of attraction and that the generalized phase behavior
seen in protein solutions extends to molecular solutes.

Globular proteins experience anisotropic interactions and
often crystallize into a variety of polymorphs, demonstrating
that the effects of specific chemical interactions of the solvent

and other solutes on protein interactions are significant.12-14

Despite these chemical effects, qualitative understanding of the
equilibrium phase behavior and the solvent conditions conducive
to protein crystallization can be initiated by treating the proteins
as spheres experiencing short-range centrosymmetric interactions
that are sensitive to the solvent conditions.6,9,15-17 This descrip-
tion qualitatively captures the solubility curve and predicts the
existence of metastable liquid-liquid-phase separation (LLPS)
and the formation of gels.14 Generalized phase diagrams have
been introduced in which the scaled second virial coefficient is
used as a Boltzmann-averaged measure of the strength of particle
interactions.6-8 However, the second virial coefficient has not
been successful in predicting the location of the metastable
liquid-liquid critical point. Anisotropic or valence-limited
interactions and nonconformal pair potentials have been sug-
gested as possible explanations.16,18-20

Three outcomes of these prior studies are of significance to
the current work. First, the effect of solvent composition on
the strength of solute interactions is substantial. As a result, in
the assembly of nanoparticles into desired structures, the
composition of the continuous phase can be considered as a
design tool. Second, the techniques for characterizing the
strength of interactions based on the second virial coefficients
require relatively large quantities of nanoparticles, whereas the
methods tend to be tedious to implement. Both of these points
suggest the need for alternate, facile methods for characterizing
the particle interactions. The third conclusion to be drawn from
the qualitative success of simple fluid theories in predicting the
phase diagrams for complex molecules such as proteins lies in
the lack of absolute molecular size dependence of these
models.15,21,22In this study, we expand on these observations
to show that fluid models are useful in understanding solubility
of solutes ranging from biomacromolecules to low-molecular-
weight organic molecules.
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In seeking facile experimental methods to characterize particle
interactions for relatively small organic molecules, such as
amino acids and pharmaceutical compounds, we find that the
second viral coefficient,B2, is difficult to measure. Instead, we
decided to use the pair contribution of the long-time self-
diffusivity determined by pulsed-field gradient spin-echo
nuclear magnetic resonance (PGSE NMR) as a probe of particle
interactions. The molecular diffusivity is determined by the
attenuation of a spin-echo signal resulting from the combinatory
effect of the translational motion of nuclear spins and the
impositions of spatially well-defined gradient pulses.23 This
method proves useful in that the signal is specific to the molecule
of interest such that any signal measured is not cross-
contaminated by the presence of other molecules, as would
occur, for example, in light scattering measurements in mixtures
of objects of similar size.

Below in Section II, we describe the experimental technique
we have implemented, and in Section III, we explore the
theoretical links between the long-time self-diffusivity and the
strength of solute. This approach shows that the pair contribution
of the scaled long-time self-diffusivity,D2, is sensitive to the
strength and range of the particle interactions. With this
knowledge, we explore how particle solubility changes with the
strength and range and thus how we might expect changes in
D2 to be reflected in changes in solubility. In Section IV, we
present experimental results for the concentration dependence
of self-diffusivity and develop a generalized phase diagram in
which D2 is used as an experimentally measurable quantity to
estimate the effective strength of solute interactions. In Section
V, we draw conclusions.

II. Experimental Section

Materials. Various solute molecules [the amino acids glycine
(Fluka,>99.5%),L-histidine (Fluka,>99.5%) andL-phenyla-
lanine (Sigma,>98.5%), the pharmaceuticals paracetamol
(Sigma,>98%) and ibuprofen (Fluka,>99%), and the protein
hen egg white lysozyme (Sigma, 3× recrystallized)] were
dissolved into different solvents [deionized water (Barnstead,
E-pure, 18 MΩ-cm), ethanol (AAPER alcohol, absolute 200
proof), isopropyl alcohol (Sigma,>99.5%, A.C.S. reagent),
acetone (Sigma,>99.5%, A.C.S. reagent), and sodium acetate
buffer (0.1 M, pH) 4.5) made by dissolving an appropriate
amount of sodium acetate (Fluka, certified A.C.S. anhydrous)
into a mixture of deionized water and acetic acid (Fisher
Scientific, A.C.S. Reagent) in the presence of sodium chloride
(Fluka, Certified A.C.S.)] or solvent mixtures at different
temperatures. All chemicals are used without further purification.
Detailed solution compositions and experimental conditions are
summarized in Table 1.

Measurement of Self-Diffusivity Using Nuclear Magnetic
Resonance (NMR).The long-time self-diffusivities of various
molecules in different solvents were measured using1H PGSE
NMR (time scale: 1500 ms) with a 600 MHz spectrometer
(Varian Unity Inova 600). A special sampling setup was
implemented in our experiments (Figure 1). The sample solution
was injected to a spherical bulb microcell (Wilmad Glass, 5
mm) and then inserted into an NMR tube (Wilmad Glass, 5
mm) filled with D2O (Sigma, Standard 99.98( 0.01 atom %
D). This setup offers two advantages: (i) strong magnetic signals
from the protonated molecules in the solvent (due to the use of
1H probe) can be greatly reduced and (ii) material consumption
can be minimized. Prior to each set of experiments at different
temperatures, the NMR probe was calibrated using reported self-
diffusion coefficients of water at respective temperatures.24-26

III. Linking Experiments To Theory

Equilibrium Thermodynamic Model. The theoretical ap-
proaches used to study the phase behavior of molecular solutions
are analogous to those used in liquid-state physics.27 A com-
monly used interaction potential of simple fluids is the square
well potential that successfully captures the essence of both the
repulsive and the attractive natures of the interaction yet
maintains remarkable mathematical simplicity. The square well
potential can be expressed as follows:

wherer is the center-to-center distance of separation between
the particles normalized by the radius of particlea, andε and
λ are the strength and range of interaction, respectively. The
square well potential was chosen as a model in this study

TABLE 1: Solvent Compositions and Temperatures Used for the Self-Diffusivity Measurement of Different Solutes Used in
This Studya

solute solvent compositions (temperature in°C) mol diam (nm)

glycine H2O (5, 25, 40, 75); 18/82 w% IPA/H2O (25); 31/69 w% IPA/
H2O (25)

0.48

L-histidine H2O (25, 60) 0.63
L-phenylalanine H2O (25) 0.66
paracetamol 50/50 w% Acetone/H2O (20, 25, 30); 70/30 w% Acetone/

H2O (20, 25, 30)
0.64

ibuprofen 50/50 w% EtOH/H2O (10, 15, 20, 25); 60/40 w% EtOH/
H2O (10, 15, 20, 25); 70/30 w% EtOH/H2O (15, 20, 25, 30); 80/
20 w% EtOH/H2O (15, 20, 25, 30); EtOH (15, 20, 25)

0.76

hen egg white lysozyme 0.1M NaAc, pH) 4.5, and 3 w/v% NaCl (20, 25, 30); 3.02
0.1M NaAc, pH) 4.5, and 5 w/v% NaCl (25, 30, 35)

a The sizes of the molecules are estimated as described in the text.

Figure 1. The sample setup in PGSE NMR self-diffusion experiments.

u(r) ) {∞ r < 2
-ε 2 e r < 2λ
0 r g 2λ

(1)
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because the theoretical correlations of thermodynamic and
transport properties of the square well fluids with the particle
interactions have been well-established in the literature.21,28-31

The near quantitative agreement between predicted and mea-
sured solubilities observed for a variety of nanoparticles and
proteins suggests that a simple fluid model such as the square
well potential captures many fundamental features of nanopar-
ticle phase behavior. Ramakrishnan and Zukoski31 developed
an equation of state for square well fluids based on the work of
Heyes and Aston,30

whereZ is the compressibility factor,P is the osmotic pressure,
k is the Boltzmann constant,T is the absolute temperature,φ is
the particle volume fraction,b ) 4π/3 andφ0 ) 0.8404, and
f(λ) andφb are tabulated functions ofλ.31 Following Lomakin
et al.32 and Asherie et al.,21 the chemical potentials of the
particles in the liquid phase and solid phase can be calculated
by eqs 3 and 4, respectively,

wherens is the number of nearest neighbors in the solid and
that is taken as 12 for face-centered cubic solids.21

The metastable liquid-liquid phase boundary can be found
by solving equations of mechanical and chemical equilibria of
the two liquid phases I and II simultaneously, in whichPI )
PII and µI ) µII . If the solid phase is considered to be
incompressible, equatingµl andµs gives the solid-liquid phase
boundary (solubility), that is, the equilibrium solubility. Finally,
phase diagrams showing the strength of interactionε/kT as a
function of particle volume fractionφ for different ranges of
interaction,λ, can be generated (Figure 2a).

Molecular Self-Diffusion. The classical theory of Brownian
motion deals with the random movement of an individual solute
particle due to stochastic collisions with the solvent molecules
of the surrounding fluid. In the dilute limit, the long-time self-
diffusivity of the molecule of interest in a continuum,Ds, can
be written as33-36

whereD0 is the Stokes-Einstein diffusivity andc andφ are,
respectively, the absolute concentration and the volume fraction
of solute that are linked byφ ) c(NA/Mw)(4πa3/3). The pair
contribution of the scaled self-diffusivity,D2, can be expressed
asD2′(NA/Mw)(4πa3/3), whereNA, Mw, anda are Avogadro’s
number, the molecular weight, and the radius of the solute
particle, respectively. In the continuum limit, the long-time self-
diffusivity of identical spherical particles has been well-studied
such thatD2 can be expressed as33-36

The first integral is the first-order correction in the short-time
self-diffusivity; the second integral is the long-time correction
due to the modification of the pair distribution function of the
interacting Brownian particles. In eq 6,Q(r) characterizes the
perturbation of the Maxwell-Boltzmann form of the pair
distribution function due to forces applied to the particles. Values
of Q(r) as well as of the mobility functionsA11, A12, B11, and
B12 are known in the hydrodynamic limit.35,37Detailed simula-
tion studies indicate that the continuum model used above is
an accurate description of solute diffusivity as long as solutes
are on the order of, if not larger than, the size of the
solvent.33,34,38In the dilute limit, the pair correlation function
g(r) is written as27

Now, D2 can be calculated as a function ofε/kT for given values
of λ from eqs 1, 6, and 7. And finally, we can convert the phase
diagram ofε/kT as a function of particle volume fractionφ
(Figure 2a) to aD2 phase diagram (Figure 2b).

For the case in which the identical particles behave like
impenetrable hard spheres (i.e.,ε ) 0), Batchelor calculated
D2 to be-2.1,34 and this value has been adapted widely since.
Figure 2a shows thatε/kT at the solubility boundary changes
with λ; however, such variations are much more subtle when
D2 is used as the measure of strength of interaction (Figure 2b),
which echoes the literature findings of a corresponding-states
solubility behavior of protein solutions when the osmotic second
virial coefficient B2 is used to characterize the strength of
interaction.15,16When the particles are interacting via short-range
interactions (λ < 1.3), these variations are negligible. This result
also agrees with the simulation studies of Sciortino and co-

Figure 2. Phase diagrams showing solubility boundaries for different ranges of interactionλ: (a) ε/kT as a function ofφ and (b)D2 as a function
of φ.

Z ) 4πPa3

3φkT
) 1 + bφ

(1 - φ/φ0)
2

+
6φ(ε/kT)f(λ)

π(1 - φ/φb)
3

(2)

µl ) ∫0

φ (4πPa3

3φ′kT
- 1) dφ′

φ′ + 4πPa3

3φkT
+ ln(φ) - 1 (3)

µs ) -
ns

2( ε

kT) - 3 ln(λ - 1) (4)

Ds

D0
) 1 + D′2c + O(c2) ) 1 + D2φ + O(φ2) (5)

D2 ) ∫2

∞
(-3 + A11 + 2B11) g(r)r2 dr +

∫2

∞ [A11 - A12 - B11 + B12

r
+

1
2 (dA11

dr
-

dA12

dr )] Q(r) g(r)r2 dr (6)

g(r) ) exp[-u(r)/kT] (7)
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workers,39-41 showing that for short-range attractions, thermo-
dynamic and diffusive properties are strongly coupled. Note that
for D2 values for very soluble materials (solubility>0.2 in terms
of particle volume fraction), we find thatD2 is insensitive to
solubility and takes on a measured value of-2.1 ( 0.2. For a
square well withλ ) 1.1, this corresponds to 0> ε/kT > -1.
Note also that if any changes in the solution compositions and
temperature leading to stronger attraction between solute
particles, that is, a decrease in solubility, the value ofD2 drops
below the hard sphere limit. Thus,D2 is always negative.

IV. Results And Discussion

For the molecules of interest, the self-diffusivity is a linear
function of solute concentration over a wide range of concentra-
tions and is sensitive to temperature (Figure 3). With a drop in
temperature,D2 becomes more negative, indicating an increase
in the strength of attraction. Extrapolating to zero concentration
diffusivity in a plot of self-diffusivity as a function of the volume
fraction φ provides a measure ofD0. Note also that the value
of D2 is sensitive to the choice of particle radius,a, sinceD2

can be written asD2′(NA/Mw)(4πa3/3). As a first choice of
particle radius, we can assume that the solute is suspended in a
continuous phase of viscosityη and that the Stokes-Einstein
expressionD0 ) kT/êηa holds. The hydrodynamic boundary
conditions to be applied result in uncertainty in particle size,
since ê equals 6π and 4π for no-slip and slip boundary
conditions, respectively. Due to this and other sources of
uncertainty introduced by using the Stokes-Einstein expression,
we instead estimate the molecular volume in the crystalline
phase asMv ) Mw/FcrNA, whereMw is the molecular weight of
the molecule,Fcr is the density of crystals, andNA is Avogadro’s
number. The molecular volumes estimated by this means can
be treated as the sum of the actual molecular volume that the
molecules take up,Mv′, and the void space in the crystal.
However, the actual void fraction of molecular crystals is far
more complicated as compared to atomic crystals that display
standard packing patterns, such as simple cubic, body-centered
cubic, face-centered cubic (FCC), hexagonal-closed packed
(HCP), etc. We find that for very soluble materials, the volume
fractions of liquid phases calculated fromMv can exceed 0.74.
As a result, we seek a systematic and unambiguous way of
linking crystal density to a molecular size. In keeping with the
model developed above, we determine a molecular size from
Mv assuming the particles are spherical and closely packed in
an FCC or HCP lattice with volume fractions of 0.74, that is,

Mv′ ) 0.74Mv. The particle size is calculated fromMv′ assuming
the molecule is spherical in shape. Our choice is made to provide
an experimental molecular size such that the comparisons we
make between different solutes and solvents do not require
interpretation through models. We emphasize that the qualitative
results of this paper are independent of choice of a consistent
particle size,a.

Solubilities of the molecules studied here are presented in
Figure 4. Values ofD2 of both small and large molecules are
sensitive to particle type, temperature, and solvent composition.
However, when the particle interactions are short-ranged, these
D2 values fall within a narrow range at the same solubility,
despite the chemical differences of the molecules investigated.
This finding is consistent with theB2 studies in which broad
classes of globular molecules display a common solubility if
the particle interactions are short in range.15 Note that the
experimentally derivedD2 values are-2.1 ( 0.2 in the limit
of high solubility and are insensitive to solubility until the
solubility has dropped belowφ ) 0.2 as predicted by simple
fluid models. This compilation of solubilities demonstrates that
(i) when compared at similar strengths of attraction, the solutions
of the molecules studied here have very similar equilibrium
phase behavior, demonstrating the usefulness ofD2 as a tool
for locating solubility boundaries; and (ii) applicability of these
generalized phase diagrams extends from systems with biom-
acromolecules to those with small molecules. In a recent
simulation study, Mittal et al. demonstrated a quantitative link
between self-diffusivity and excess entropy.42 The excess
entropy is related to other thermodynamic functions, such as
the pair correlation function,g(r), and thus may provide an
explanation for why we see such a good correlation between
D2 and solubility. Simulation studies by Lekkerkerker and co-
workers on phase behavior of rod-sphere mixtures have shown
that even with a large aspect ratio of 20, the shapes of the phase
diagrams are not too much different from those of the hard
spheres, implying that our generalized phase diagram in theD2

space might be extended to the study of nonideally spherical
model systems.43,44

We note that the phase diagram is unable to predict formation
of multiple polymorphs upon solid-liquid phase transition due
to the limitations of the simple fluid theories. Nevertheless, the
simple fluid theory captures the solubility in a semiquantitative
manner. Note also that the solubility boundaries calculated from
different ranges of attraction,λ, collapse into a narrow range
for λ < 1.3 (Figure 2b), thus predictingλ for the interacting
solute particles from the solubility data orD2 is not advisable.
On the other hand, this insensitivity of solubility subject to the
change in range of attraction also indicates that the thermody-
namics of solutions near crystallization depends mainly on the
short nature of the interaction potential, regardless of the details
of the interaction.

Although LLPS as well as gel formation commonly occurs
in protein solutions, these states are rarely seen in small molecule
solutions. Detailed calculations show that LLPS becomes
metastable relative to the solid-liquid phase boundary as the
range of attractionλ becomes smaller than∼1.3.45 Recent
studies for short-range attractions suggest that anisotropy in the
pair interaction potentials can alter the volume fraction and the
strength of attraction at the critical point.16,18-20 In addition,
the complete absence of a metastable LLPS may arise due to a
fast crystal nucleation rate.13 The fact that small molecules
appear to exhibit phase behavior similar to that of globular
proteins offers new insights for where to look for metastable
states in small molecule solutions.

Figure 3. Scaled long-time self-diffusivities of glycine in H2O as a
function of solute particle volume fraction at different temperatures.
The slopes of the linear fits provide values forD2. Some error bars are
smaller than the size of the symbols.
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V. Conclusion

In this work, we demonstrate the success in usingD2 as a
reasonable predictor of the solubility of small hydrogen-bonding
molecules. A comparison with the phase behavior of lysozyme
indicates that only modest differences exist in the effective
interactions of weakly to modestly soluble small molecules and
those of nanoparticles. Comparison of the solubility behavior
of such broad classes of materials suggests that the interactions
dominating the fluid-solid phase behavior have a range that is
small compared to the molecular size.

Nucleation and growth of protein crystals has been exten-
sively studied, providing insights on the mechanisms of fluid-
solid phase transitions and the origins of metastable states. The
small molecules studied here form hydrogen bonds in the solid
state that are highly directional and have a range of 0.2-0.3
nm such thatλ is expected to be on the order of 1.2-1.5. These
estimates are at the edge of, but larger than, attractive well
widths that will show stable LLPS for spheres interacting with
isotropic square-well attractions. We note, however, that these
systems are valance-limited and have strongly isotropic interac-
tions, suggesting that these factors may suppress the critical point
to lie below the solubility boundary. In sum, our studies indicate
that the equilibrium behavior of small and large molecules is
very similar when compared on the same basis, suggesting that
advances made in understanding the equilibrium phase behavior
of globular protein solutions can be applied to a wide variety
of molecular and colloidal systems.

Acknowledgment. This work is supported by the Agency
for Science, Technology and Research (A*STAR), Singapore.
The authors thank Dr. Paul Molitor (UIUC) for assistance in
the NMR experiments and Dr. Subramanian Ramakrishnan
(Florida State University) for stimulating conversations.

References and Notes

(1) Davey, R. J.Nature2004, 428, 374-375.
(2) Lin, Y.; Böker, A.; He, J.; Sill, K.; Xiang, H.; Abetz, C.; Li, X.;

Wang, Y.; Emrick, T.; Long, S.; Wang, Q.; Balazs, A.; Russell, T. P.Nature
2005, 434, 55-59.

(3) Thornton, G.Science2003, 300, 1378-1379.
(4) Buttar, D.; Charlton, M. H.; Docherty, R.; Starbuck, J.J. Chem.

Soc., Perkin Trans. 21998, 763-772.
(5) Mirmehrabi, M.; Rohani, S.J. Pharm. Sci.2005, 94, 1560-1576.
(6) Neal, B. L.; Asthagiri, D.; Lenhoff, A. M.Biophys. J.1998, 75,

2469-2477.
(7) Tessier, P. M.; Lenhoff, A. M.; Sandler, S. I.Biophys. J.2002, 82,

1620-1631.
(8) Mirarefi, A. Y.; Zukoski, C. F.J. Cryst. Growth2004, 265, 274-

283.

(9) George, A.; Wilson, W. W.Acta Crystallogr. D1994, 50, 361-
365.

(10) Guo, B.; Kao, S.; Asanov, A.; Combs, L. L.; Wilson, W. W.J.
Cryst. Growth1999, 196, 424-433.

(11) Tessier, P. M.; Vandrey, S. D.; Berger, B. W.; Pazhianur, R.;
Sandler, S. I.; Lenhoff, A. M.Acta Crystallogr. D2002, 58, 1531-1535.

(12) Vekilov, P. G.Methods Enzymol.2003, 368, 84-105.

(13) Vekilov, P. G.Cryst. Growth Des.2004, 4, 671-685.

(14) Kulkarni, A. M.; Dixit, N. M.; Zukoski, C. F.Faraday Discuss.
2002, 123, 37-50.

(15) Rosenbaum, D.; Zamora, P. C.; Zukoski, C. F.Phys. ReV. Lett.
1996, 76, 150-153.

(16) Katsonis, P.; Brandon, S.; Vekilov, P. G.J. Phys. Chem. B2006,
110, 17638-17644.

(17) Ruppert, S.; Sandler, S. I.; Lenhoff, A. M.Biotechnol. Prog.2001,
17, 182-187.

(18) Sear, R. P.J. Chem. Phys.1999, 111, 4800-4806.

(19) Kern, N.; Frenkel, D.J. Chem. Phys.2003, 118, 9882-9889.

(20) Zaccarelli, E.; Saika-Voivod, I.; Moreno, A. J.; Nave, E. L.;
Buldyrev, S. V.; Sciortino, F.; Tartaglia, P.J. Phys.: Condens. Matter2006,
18, S2373-S2382.

(21) Asherie, N.; Lomakin, A.; Benedek, G. B.Phys. ReV. Lett. 1996,
77, 4832-4835.

(22) Noro, M. G.; Frenkel, D.J. Chem. Phys.2000, 113, 2941-2944.

(23) Price, W. S.Concepts Magn. Reson.1997, 9, 299-336.

(24) Millis, R. J. Phys. Chem.1973, 77, 685-688.

(25) Easteal, A. J.; Price, W. E.; Woolf, L. A.J. Chem. Soc., Faraday
Trans. 11989, 85, 1091-1097.

(26) Holz, M.; Heil, S. R.; Sacco, A.Phys. Chem. Chem. Phys.2000,
2, 4740-4742.

(27) Hansen, J. P.; McDonald, I. R.Theory of Simple Liquids, 3rd ed.;
Academic Press: London, 2006.

(28) Henderson, D.; Scalise, O. H.; Smith, W. R.J. Chem. Phys.1980,
72, 2431-2438.

(29) Vega, L.; De Miguel, E.; Rull, L. F.; Jackson, G.; McLure, I. A.J.
Chem. Phys.1991, 96, 2296-2305.

(30) Heyes, D. M.; Aston, P. J.J. Chem. Phys.1992, 97, 5738-5748.

(31) Ramakrishnan, S.; Zukoski, C. F.J. Chem. Phys.2000, 113, 1237-
1248.

(32) Lomakin, A.; Asherie, N.; Benedek, G. B.J. Chem. Phys.1996,
104, 1646-1656.

(33) Batchelor, G. K.J. Fluid Mech.1976, 74, 1-29.

(34) Batchelor, G. K.J. Fluid Mech.1983, 131, 155-175.

(35) Cichocki, B.; Felderhof, B. U.J. Chem. Phys.1988, 89, 3705-
3709.

(36) Cichocki, B.; Felderhof, B. U.J. Chem. Phys.1990, 93, 4427-
4432.

(37) Jeffrey, D. J.; Onishi, J.J. Fluid Mech.1984, 139, 261-290.

(38) Bosma, J. C.; Wesselingh, J. A.Trans. IChemE, Part A1999, 77,
325-328.

Figure 4. Phase diagram for a variety of solutes inD2 space. The different symbols correspond to experimental data obtained for molecular
systems as specified in Table 1. Solubility data for various systems are obtained from the literature,46-50 then converted to volume fraction as
described in the text. The solid line is the model solid-liquid phase boundary for range of interactionλ of 1.1.
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