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Electrochemical conversion of CO2 to useful chemicals: current
status, remaining challenges, and future opportunities
Huei-Ru ‘‘Molly’’ Jhong1,3, Sichao Ma2,3 and Paul JA Kenis1,3
The rise of atmospheric CO2 levels must be slowed, or better

reverted, to avoid further undesirable climate change.

Electrochemical reduction of CO2 into value-added chemicals

using renewable energy is one approach to help address this

problem as it will recycle ‘spent’ CO2 (carbon neutral cycle) and

it provides a method to store or utilize otherwise wasted excess

renewable energy from intermittent sources, both reducing our

dependence on fossil fuels. Current electrolysis cells

accomplish either high Faradaic efficiency (often >95%

selectivity) for a desired product (e.g. CO), or reasonable

current density (conversion), whereas both need to be high for a

commercial process. This review will discuss current status

and opportunities for catalyst design, electrolyte choice, and

electrode structure.
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Introduction
Carbon dioxide (CO2) emissions into the atmosphere will

need to be drastically reduced to curb the various unde-

sirable effects of climate change. One approach is to

switch from fossil fuel burning power plants to renewable

sources like solar, wind, and water, which has the added

benefit that we reduce our dependency on dwindling

global supplies of fossil fuels. However, because of their

intermittent nature, the fraction of energy that can be

supplied from renewable sources will be limited to 30%,

unless approaches for large scale energy storage become

available. Alternatively, CO2 could be captured from

point sources such as power plants, followed by conver-

sion into chemicals of economic value [1–3]. Potential

products include formic acid [4��,5], methanol, CO
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[4��,6,7�,8–12,13��], and ethylene [4��,14�] which can

be formed using processes such as homogeneous catalysis

[15,16], heterogeneous catalysis [17��,18], photocatalysis

[19], photoreduction [19], or electrochemical

reduction — the topic of this review. In addition to redu-

cing greenhouse gas emissions, CO2 conversion processes

will reduce our dependency on fossil fuels for chemical

synthesis. At this point, however, it is unclear which of

these strategies are technologically feasible and make

economic and practical sense [1]. Electrochemical CO2

reduction has the advantage that it may be an approach to

utilize excess energy from intermittent renewable sources

in lieu of large scale energy storage.

This review will summarize the current status, remaining

challenges, and future opportunities for electrochemical

conversion of CO2 into value-added chemicals or inter-

mediates at low temperatures. Prior reviews and reports

have provided an excellent overview of possible products

of electrochemical CO2 reduction, including CO, for-

mate, methane, ethylene, ethanol, n-propanol, allyl alco-

hol, acetaldehyde, propionaldehyde, acetate, methanol,

ethylene glycol, glycolaldehyde, hydroxyacetone,

acetone, and glyoxal [14�,17��,20]. In an electrolyzer

CO2 is reduced on the cathode while the oxygen evol-

ution reaction (OER) takes place on the anode. Half-

reactions of the cathode for electrochemical CO2

reduction into major products such as CO, formate,

methane, and ethylene are listed below.

CO2þ 2Hþ þ 2e� ! CO þ H2O

CO2þ Hþ þ 2e� ! HCOO�

CO2þ 8Hþ þ 8e� ! CH4þ 2H2O

2CO2þ 12Hþ þ 12e� ! C2H4þ 4H2O

The process of CO2 electrolysis is basically running a fuel

cell in reverse; so indeed, many lessons learned over the

last five or so decades in the development of catalysts,

electrodes and cell configurations of fuel cells do apply

also to the development of efficient CO2 electrolysis

processes, but certain aspects will be very different and

will require different optimization strategies. For

example, both low-temperature fuel cells and CO2 elec-

trolysis cells are often limited by cathode performance, so

both seek to improve slow cathode kinetics by developing

more active catalysts. However, in addition to activity, the

catalyst for CO2 reduction needs to exhibit high product

selectivity so the formation of desired products is heavily

favored while suppressing unwanted reactions. Moreover,

effective removal of products from the catalyst layer to
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avoid blocking active sites is important in both fuel cells

and CO2 electrolysis cells, but the technical strategies to

do so can be very different due to the different nature of

products. Specifically, the oxygen reduction reaction in

acidic fuel cells generates water which often leads to

water management issues, whereas the CO2 reduction

reaction in CO2 electrolysis cells often leads to the

formation of both gaseous (e.g. CO, H2) and liquid

products and thus effective gas/liquid phase separation

is vital. The subsequent sections will briefly review the

technological requirements for catalysts, electrodes,

electrolytes, and cell configurations.

Terminology and figures of merit
For electrochemical reduction of CO2 to be performed in

an efficient manner, highly active and durable electroca-

talysts for both the cathode (CO2 reduction reaction) and

the anode (O2 evolution reaction), as well as electrodes and

electrolytes that have high conductivity and allow for

sufficient mass transport of the reactants and products

to/from the catalyst layers are required. Key figures of

merit of the process that characterize its performance

and thus assist in determining its economic feasibility

are: (i) the energetic efficiency (EE) — a measure of the overall

energy utilization toward the desired product; (ii) the

current density (CD) — a measure of the rate of conversion;

(iii) the Faradaic efficiency (FE) — a measure of the selec-

tivity of the process for a given product; (iv) the catalyst
stability; and (v) process costs [21�] — including material

consumption costs, capital cost and electricity cost. In this

review, we will focus on the first three figures of merit (EE,

FE, and CD) because currently neither standard protocols

for durability tests of catalysts nor cost models for major

products exist for electrochemical CO2 conversion.

The energetic efficiency can be calculated using Eq. (1):

eenergetic ¼
X

k

Eo
kek;Faradaic

Eo
k þ h

(1)

where Eo
k is the equilibrium cell potential for a certain

product. For example, Eo ¼ Eo
cathode � Eo

anode ¼ �0:10 V �
1:23 V ¼ �1:33 V for converting CO2 to CO and Eo ¼
Eo

cathode � Eo
anode ¼ 0 V � 1:23 V ¼ �1:23 V for H2 evol-

ution). ek,Faradaic is the Faradaic efficiency of product k
and h is the cell overpotential (or the sum of overpoten-

tials on the cathode and anode). From this equation it

becomes clear that high energy efficiency is achieved

through a combination of high Faradaic efficiency for the

desired product, and low overpotentials on the cathode

and anode, because that will lead to a low cell potential.

Note that at times researchers use a slightly different

approach to determine the energy efficiency of their

experimental setup [7�].

The Faradaic efficiency (sometimes also referred to as the

current efficiency) for a given product is calculated using
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Eq. (2):
eFaradaic ¼

z � n � F

Q
(2)

where z is the number of electrons exchanged (e.g. n = 2

for reduction of CO2 to CO), n the number of moles for a

given product, F Faraday‘s constant (F = 96 485 C/mol),

and Q the charge passed (C) [7�,14�,22].

The overall current density, defined as the current at a

given cell potential divided by the active cathode elec-

trode area (geometric surface area of the cathode), is a

measure of the electrochemical reaction rate (conversion),

so it helps determine the electrode area (and thus the

electrolyzer size and capital investment) needed to meet

the desired rate of producing the product. One can also

calculate partial current densities for the individual pro-

ducts formed by multiplying overall current density by

the corresponding FE.

Current status and remaining challenges
Figure 1 shows plots of the energetic (Figure 1a) and

Faradaic (Figure 1b) efficiencies versus current

densities for CO2 reduction to formic acid, syngas,

and C1–C2 fuels (methane, ethylene and methanol)

for data published in the literature from 1985 to Decem-

ber 2012. The data points that went into Figure 1 were

chosen based on three criteria: the highest Faradaic

efficiency, highest energetic efficiency,  or highest cur-

rent density achieved in a single report for the particular

product. Note that many variables such as catalyst,

electrode (plate, mesh, or gas diffusion electrode),

electrolyte (composition and pH), cell configuration,

temperature, and pressure are not consistent so this plot

is only intended to provide a bigger picture of which

figures of merit need most improvement. From these

plots it is evident that for each of the different products,

many examples have been reported exhibiting a high

EE or a high FE, or a high CD, but that optimizing all

three figures of merit has been a challenge. For example,

for several cases of C1–C2 fuel production a high Far-

adaic efficiency in combination with a high current

density has been achieved (as high as 70% FE with a

CD of 600 mA/cm2; Figure 1a), but these same cases

exhibit energetic efficiencies of less than 22%.

Catalysts

Electrocatalysts are needed to bind and activate CO2 in

order to reduce the high overpotentials typically encoun-

tered. Also, catalysts can drive selective formation of

desired products. During the past few decades efforts

have mostly focused on different metal catalysts and the

various products that can be formed using those metals

[4��,6,23,24]. Four distinct classes of metal catalysts have

been identified for CO2 reduction: (i) metals that mainly

form formic acid, HCOOH (Pb, Hg, In, Sn, Cd, Tl); (ii)

metals that mainly form carbon monoxide, CO (Au, Ag,

Zn, Pd, Ga); (iii) metals that form significant amounts of
www.sciencedirect.com
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Figure 1
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Summary of electrochemical performance for CO2 conversion from

selected literature in the period from 1985 to December 2012. (a)

Faradaic efficiencies and (b) energetic efficiencies as a function of

current density for three different (types of) products: formic acid

[4��,14�,28,29,31,32,51,57–63], syngas

[4��,6,10,11,13��,26�,27,30�,35�,38,53,54,61,63–71], and C1–C2 fuels

(methane, ethylene, and methanol) [6,14�,35�,40,60,61,63,66,71].
hydrocarbons such as methane and ethylene (Cu); and

(iv) metals that mainly form H2 (Pt, Ni, Fe, Ti) [4��].
Other potential products formed using metal catalysts

include alcohols [17��] and oxalic acid [25]. Over the last

few years, researchers have also started to study other

materials, including metal oxides [26�,27,28], metal

organic frameworks (MOFs) [29], as well as organome-

tallic catalysts [30�]. In this review, we summarize work

on heterogeneous catalysts that mainly form formic acid,

CO, hydrocarbons, and methanol.
www.sciencedirect.com 
Formic acid

Formic acid can be produced with very high Faradaic

efficiencies on metals with high overpotential for H2

production, for example, Hg, Pb [4��]. Metal oxides

[28], alloys [31,32] and MOF catalysts [29] have also been

found active for HCOOH production. Chen et al. found

that a Sn/SnOx catalyst exhibits much higher partial

current density and Faradaic efficiency for HCOOH

whereas Sn0 only produces H2 [28]. This result suggests

the participation of SnOx in the CO2 reduction pathway.

Agarwal et al. showed that Sn-alloy catalysts yield higher

Faradaic efficiencies than pure Sn at lower polarization

[31]. Hinogami et al. synthesized a copper rubeanate

metal organic framework (CR-MOF) catalyst which

was able to decrease the onset for CO2 reduction by

0.2 V compared to a plain Cu electrode [29].

Hydrocarbons

Copper catalysts seem uniquely capable of reducing CO2

to hydrocarbons at ambient pressure and temperature

[4��,14�,20,33,34]. Recently, Jaramillo et al. have ident-

ified the many hydrocarbon products that form, and

elucidated the mechanism by which these products form,

using a flow cell with a Cu-based cathode [14�]. In a

number of other studies, modifying copper surfaces has

been shown to lower the overpotential and increase the

selectivity for hydrocarbon formation. For example, Tang

et al. found that a Cu electrode covered with Cu nano-

particles exhibits higher selectivity toward hydrocarbons

due to a greater abundance of under-coordinated sites

[35�]. Li et al. modified Cu electrodes by annealing Cu foil

in air, which resulted in a stable electrode that lowered

the overpotential for CO2 reduction by 0.5 V compared to

polycrystalline Cu [27]. Schouten et al. studied two single-

crystal copper electrodes and observed two different

mechanisms for ethylene formation [36].

Carbon monoxide

CO can also be produced with high Faradaic efficiency on

various metal electrodes [4��], and when combined with

H2 liquid fuels can be produced via the Fischer–Tropsch

process. H2 can be produced at less negative potential

than CO, using fairly efficient processes (e.g. water elec-

trolysis, biomass conversion, or the water gas shift reac-

tion), so most efforts focus on optimizing the CO2

conversion process with respect to maximizing CO pro-

duction, although in some application scenarios a single

reactor for cogenerating CO and H2 may be preferred over

two separate but more efficient reactors. Ag catalysts have

long been the state of the art for CO production, with

recently reported current densities as high as 91 mA/cm2

[37��], but other systems are also actively being studied.

Rosen et al. reported being able to decrease the over-

potential for CO production to 0.17 V, that is, they

observed CO evolution at an cell potential of �1.5 V,

close to the theoretical equilibrium cell potential of

�1.33 V (difference between the equilibrium cathode
Current Opinion in Chemical Engineering 2013, 2:191–199
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potential of �0.10 V and the equilibrium anode potential

of 1.23 V), by using an aqueous ionic liquid solution, in

which the 1-ethyl-3-methylimidazolium (EMIM+) cation

serves as a co-catalyst, in combination with Ag nanopar-

ticles immobilized on the electrode [13��]. Unfortunately,

the current densities reported in this work are low, less

than 5 mA/cm2. We have recently studied diaminotria-

zole-based organometallic silver catalysts, which

decreased Ag loading by a factor of 20, while maintaining

similar performance [30�]. Furthermore, a co-catalyst

mechanism was also suggested by using those ligands.

Interestingly, it is not clear whether the organometallic

species is actually the catalytically active species on the

electrode surface at this point. Salehi-Khojin et al. inves-

tigated the effect of Ag particle size on CO2 reduction

activity and observed maximum activity for particles with

an average size of 5 nm Ag [38]. In another interesting

lead, Chen et al. showed that Au nanoparticles synthes-

ized by reduction of Au oxide films are highly selective for

reduction of CO2 to CO at overpotentials of about 0.14 V

[26�].

Methanol

While methanol is a desirable product due to its wide

range of application, including direct use as a fuel for a

fuel cell, there are few reports on its formation from CO2

via heterogeneous, electrochemical methods and these

typically reported low current densities and/or low Far-

adaic efficiencies [39,40]. In contrast, homogeneous cat-

alysis efforts for the conversion of CO2 into methanol

have been quite successful [41–43].

In summary, catalysts for the selective reduction of CO2

into different interesting products have been developed,

but catalysts that simultaneously exhibit overpotentials

(e.g. <0.2 V) and current densities (e.g. >100 mA/cm2)

needed for commercial applications are still lacking. The

quest for such catalysts could be aided by more funda-

mental studies focusing on elucidation of reaction mech-

anisms for distinct catalysts, an area in which reports are

few [36,44,45��] and more in-depth modeling efforts,

ideally linked directly with experimental work, so path-

ways for CO2 reduction on different catalysts can be

better understood, which in turn will assist the design

and synthesis of novel catalysts that have both low over-

potential and high activity for CO2 reduction reactions.

Electrode structure

Electrodes play a vital role in all devices based on

heterogeneous electrochemical reactions, including those

for CO2 conversion. The performance and durability of

the reactor are largely determined by the processes

occurring at the electrode–electrolyte interface and

within the electrode. In general, electrodes comprised

a catalyst layer and a backing layer/substrate serve

multiple functions: firstly to deliver reactant gas, CO2,

from flow-field channels to the catalyst layer, secondly to
Current Opinion in Chemical Engineering 2013, 2:191–199 
transport product from the catalyst layer into flow chan-

nels or the electrolyte/membrane, and lastly to conduct

electrons with low resistance [46,47]. Maximizing elec-

trode performance, and consequently reactor perform-

ance, requires optimizing all of these transport

processes that strongly depend on the complex structure

of the electrode.

Despite their importance, to date only a few efforts have

studied the interplay between electrode structure and

performance [4��,7�,12,37��,48]. In early work, Hori et al.
extensively studied the CO2 reduction reaction on planar

metal electrodes (Cu, Au, Ag, Zn, Pd, Ga, Pb, Hg, In, Sn,

Cd, Tl, Ni, Fe, Pt, Ti) at low current densities of about

5 mA/cm2 [4��]. Low surface area and low CO2 concen-

trations at the electrode surface due to the limited CO2

solubility in the aqueous electrolytes used limit the

performance of such planar electrodes. Yano et al. pro-

posed the use of a metal (Ag, Cu) mesh as the cathode for

CO2 reduction in a modified H-type cell in which the

reaction can take place at a three-phase gas/solid/liquid

interface by delivery of gaseous CO2 from a gas chamber

[12,48]. The lack of current density data in this report

prevents quantification of the beneficial effects of this

approach. More recently, Delacourt et al. hand-painted or

spray-painted Ag catalyst inks on gas diffusion layers

(GDLs) commonly used in polymer electrolyte mem-

brane fuel cells, to generate cathodes with a Ag (particle

size of 1 mm) loading of 8–10 mg/cm2 [7�]. When this Ag

nanoparticle-covered GDE (cathode) was mounted in a

fuel cell-like CO2 electrolysis cell with a buffer layer of

0.5 M KHCO3 in contact with the Ag cathode, current

densities as high as 20 mA/cm2 were obtained, in com-

bination with product selectivities for CO and H2 that are

comparable to the findings by Hori et al. [4��] and Yano

et al. [12] using similar catalysts (Ag) and electrolytes

(0.5 M KHCO3). We recently reported a current density

as high as 91 mA/cm2 in combination with 94% Faradaic

efficiency for CO, and 46% energetic efficiency using a

gas diffusion electrode (GDE) covered with a catalyst

layer of Ag nanoparticles (particle size of 70 nm) [37��].
The data were collected at room temperature and ambi-

ent pressure using a microfluidic CO2 electrolysis cell in

which a flowing aqueous KCl electrolyte separated the

cathode (a GDE covered with a Ag catalyst layer) and

anode (a GDE covered with a Pt catalyst layer). Depo-

sition of the catalyst using a fully automated airbrushing

method yielding a very thin (7 � 2 mm measured using X-

ray micro-computed tomography), crack free layer with a

Ag loading of only 0.75 mg/cm2 (Figure 2) was key to

achieving this state-of-the-art performance, while simul-

taneously drastically reducing the amount of metal cat-

alyst needed compared to planar metal electrodes, metal

meshes, as well as other approaches to deposit metal

nanoparticle-based inks. Furthermore, Salehi-Khojin

et al. investigated how Ag particle size has a profound

effect on CO2 reduction activity [38]. They observed that
www.sciencedirect.com



Electrochemical conversion of CO2 to useful chemicals Jhong, Ma and Kenis 195

Figure 2
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100 µm

100 µm

Example of the effect of catalyst layer deposition method (airbrushing vs.

hand-painting) on electrode performance for converting CO2 into CO

[37��]. Depositing Ag nanoparticle-based catalyst layers via fully

automated air-brushing method led to a 3-fold increase in partial CO

current density (not shown) and enhanced product selectivity (94% CO),

despite a 10-fold decrease in catalyst loading compared to prior reports

[37��].
the reaction rate of the reduction of CO2 to CO increases

as the particle size decreases from 200 to 5 nm, but then

drops again as the particle size decreases to 1 nm. Thus, a

diameter of about 5 nm is likely an optimal particle size

for Ag catalysts. In summary, use of a GDE in combi-

nation with optimized catalyst layer deposition methods

has led to significant improvement in electrode perform-

ance for CO2 reduction. Further efforts should probably

focus on assessing, via experiment and modeling, to what

extent the structure and chemical composition of the
catalyst layer (e.g. pore size and distribution, the choice

of binder materials such as Nafion) and the porous backing
layer (e.g. porosity, hydrophobicity, layer thickness)

impact the transport of reactants (sufficient supply of

CO2?) and products (active sites blocked?).

Electrolyte

Few efforts to date have focused on the effects of electro-

lyte composition on electrochemical CO2 reduction,

despite the fact that electrolytes have been known to

affect almost every electrochemical process dating back

to the days of Frumkin [49].

The heterogeneous electrochemical reduction of CO2

employs aqueous electrolytes commonly comprised

alkali cations (e.g. Na+, K+), various anions such as halide

anions (e.g. Cl�), bicarbonate (HCO3
�), or hydroxide

(OH�), and water [4��,33,50,51]. These inorganic salts

are often used due to their high conductivities in water.
www.sciencedirect.com 
Additionally, the water in aqueous electrolytes provides

protons for the necessary electrochemical proton transfer

steps involved in the reaction pathway [4��,45��]. A number

of prior reports have shown that electrolyte choice has

profound effects on current density, product selectivity,

and energetic efficiency in CO2 reduction [33,50,51]. For

example, Hori et al. reported that cation choice (i.e. Li+,

Na+, K+, and Cs+) for bicarbonate (HCO3
�) electrolytes

significantly impacts the distribution of product formed on

copper (Cu) electrodes [50]. Hori et al. also reported that

anion choice (i.e. Cl�, ClO4
�, SO4

�, HCO3
�, H2PO4

�),

each with different buffer capacities, influences the local

pH at the Cu electrode and thus the nature and the amount

of products formed [33]. Similar to these findings by Hori

et al., Wu et al. observed significant differences in activity

and selectivity of tin (Sn) electrodes when different

electrolytes (KHCO3, K2SO4, KCl, Na2SO4, Cs2SO4,

NaHCO3, and CsHCO3) are used [51]. Previously, we

reported that the size of the cation (Na+ < K+ < Rb+

< Cs+) of the salt used in the electrolyte plays a significant

role in CO2 reduction on silver (Ag) electrodes. Specifi-

cally, larger cations favor CO production and suppress H2

evolution [52�].

In summary, these studies show that (i) cation size

impacts the propensity for cation adsorption on the elec-

trode surface, which affects the potential of the outer

Helmholtz plane (OHP) in the electrical double layer

(EDL), and in turn impacts reaction energetics and

kinetics; and (ii) the buffer capacity of anions impacts

the local pH at the electrode and thus the availability of

protons, which in turn affects reaction kinetics. Further-

more, depending on reactor configuration, electrolyte

composition may enhance performance by improving

the solubility of CO2, for instance by using ionic liquids

instead of aqueous solution, thereby reducing mass trans-

port limitations.

Electrolyzers

No standard experimental setup or methodology for

studying electrochemical CO2 reduction currently exists.

Different labs have used a variety of flow cells or electro-

lyzers for the various studies reported here. Jaramillo and

coworkers [14�], as well as our lab [5,30�,37��,52�], use a

microfluidic flow cell in which the electrodes are separ-

ated by a flowing liquid electrolyte, which enables

analysis of individual electrode performance by using

an external reference electrode. Delacourt et al. based

their design on an alkaline fuel cell [7�], while Dufek et al.
used a more traditional electrolyzer design [10,11,53,54].

Interestingly, three of these systems exhibit similar beha-

vior when comparing their performance for CO pro-

duction (Figure 3). All data plotted in Figure 3 were

collected at room temperature and ambient pressure to

allow for fair comparison (identical kinetics) although

these conditions might not be optimal for the reactors

reported by Delacourt et al. and Dufek et al. Indeed,
Current Opinion in Chemical Engineering 2013, 2:191–199
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Figure 3
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Comparison of different electrolyzer configurations for electrochemical

conversion of CO2 to CO. Jhong et al.: a microfluidic flow cell [37��];

Dufek et al.: a traditional electrolyzer [10]; and Delacourt et al.: a

modified alkaline fuel cell [67]. The data from the literature plotted here

were all collected at room temperature and ambient pressure.
Dufek et al. [10,54] have reported improved reactor

performance at elevated temperature and/or pressure.

The key difference between our recent data [37��],
and the data by the two other groups is that the same

CDs and EEs can be achieved at much lower cell poten-

tials. This difference can be completely attributed to the

optimized structure of the catalyst layer in our flow cell-

based electrolyzer. This suggests that electrolyzer design,

which has a profound effect on mass transport, is pre-

sently not limiting the performance of CO2 electrolyzers.

Indeed, one would expect even better performance if

these optimized catalyst layers would be used in reactors

such as those reported by Delacourt et al. and Dufek et al.
Still, further optimization of operating conditions (e.g.

electrolyzers operated at elevated pressure and tempera-

ture) will continue to improve reactor performance in

CO2 reduction. Specifically, multiple labs have reported
Current Opinion in Chemical Engineering 2013, 2:191–199 
enhanced current densities in pressurized electrolyzers

(e.g. 20 atm) [32,55]. For example, Furuya et al. reported

that a total current density as high as 300–900 mA/cm2 can

be achieved under 20 atm using a pressurized electrolyzer

operated with GDEs coated with different metals (Pt, Ag,

Cu, Ni, Co, Pd) [32].

Future opportunities and concluding remarks
Recent reports on a variety of promising catalysts for CO2

reduction (MOFs, organometallics, etc.) suggest that sig-

nificant strides will be made to enhance catalyst activity

while reducing overpotential. Such efforts will greatly

benefit from fundamental mechanistic studies, as well as

modeling of new classes of catalytic materials. Fine-tun-

ing the electrolyte composition for a given catalyst offers a

further opportunity for performance enhancement.

A key opportunity resides in optimization of electrode

structure and/or composition. On the basis of our experi-

ence, CO2 electrolysis is much more sensitive to the

structure and composition of the microporous layer than

similar electrodes in an identical cell operated as a fuel

cell. Further efforts should probably focus on assessing,

via experiment and modeling, to what extent the physical

properties of these gas diffusion layers (e.g. porosity,

hydrophobicity, layer thickness) impact effective gas–
liquid phase separation while facilitating transport of

reactants (sufficient supply of CO2?) and products (active

sites blocked?).

The above shows that multiple opportunities for further

improvement of the EE, FE, and CD for electrochemical

reduction of CO2 to (intermediates for) value-added

chemicals are available, but a few key questions remain:

What combination of optimized figures of merit will be

sufficient for economic feasibility? How fast do the com-

ponent materials (particularly catalysts) degrade over long

periods of time? What are the sources of CO2 and how will

potential contaminants such as sulfur-containing com-

pounds impact electrolyzer design, as well as cell per-

formance and catalyst durability [11]? Answering these

questions requires a full system and life cycle analysis,

well beyond the scope of this review. However we did

start to develop a crude process cost analysis model [56]

for the electrochemical reduction of CO2 to CO to get an

idea of how the cost to produce CO scales with current

density (Figure 4). Many assumptions, including capital

cost (e.g. non-linear correlation of capital cost and pro-

duction rate) and the cost of electrical power (e.g. linear

correlation of energy cost and production rate) went into

this model, so on the y-axis we only show the specific cost

to produce CO ($/unit mass of CO produced) as well as

the costs of capital investment and energy in arbitrary

units. Critically, the cost to produce a given amount of CO

is relatively high and dependent on the current density at

which the electrolyzer is being operated below CD values

of �250 mA/cm2, whereas the cost levels off if the process
www.sciencedirect.com
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Schematic representation of the results of a crude cost analysis model

for the electrochemical conversion of CO2 to CO: the relative cost of

energy, capital investment, and the resulting CO cost as a function of the

current density. The purpose of this graph is to visualize that the cost to

produce CO is strongly dependent on current density below �250 mA/

cm2, but levels off for higher current densities.
can be operated at higher current densities. One may

conclude that the present state of the art performance of

CDs around 100 mA/cm2 (see e.g. [37��]), is still far from a

performance level where the cost to produce CO starts to

level off. So indeed the performance of CO2 electrolyzers

needs to be improved significantly by development of

better catalysts in combination with optimized electrode

and electrolyte formulations. As mentioned above, esti-

mation of the actual cost to produce CO (or other pro-

ducts) via electrochemical reduction of CO2 will require

the development of much more in depth cost and life

cycle analysis models.
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