Comprehensive energy analysis of a photovoltaic thermal water electrolyzer

Muhammed E. Oruc, Amit V. Desai, Paul J.A. Kenis, Ralph G. Nuzzo

Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL 61801, United States
Department of Chemistry, University of Illinois, Urbana, IL 61801, United States

HIGHLIGHTS
- A Photovoltaic Thermal Water Electrolyzer (PVTE) configuration is reported.
- The PVTE system was modeled to determine optimal geometry and operating conditions.
- The overall efficiency increased with the velocity of heat-transfer fluid.
- The max improvement in power output for the PVTE compared to a PV alone is in the afternoon.
- A PVTE (instead of a standalone electrolyzer) exhibits 2.5 times more hydrogen production.

ABSTRACT
The use of photovoltaic thermal (PVT) technologies enables improvement in the electrical efficiency of a photovoltaic (PV) module by reducing the temperature of the PV module via active waste heat removal. In current PVT systems, the removed heat is mainly used for specific applications, such as water and/or room heating, but their need is intermittent and seasonal. For a more efficient and versatile use of the removed waste heat, we propose a new architecture where the PV module is integrated with a dual-functional electrolyzer that removes the waste heat by active cooling and produces hydrogen via electrolysis. The excess heat from the PV cell is utilized to enhance the reaction kinetics of the electrolysis process (due to an increase in temperature) inside an electrolyzer, which is located below the PV module. In this paper, we used finite-element analysis (FEA) simulations to optimize the geometry and operating conditions of an electrolyzer to maximize overall energetic efficiency and hydrogen production. To evaluate the practical feasibility of the approach, we performed a comprehensive energy analysis of the PVTE system using data from Phoenix, AZ. The energetic efficiency of the proposed PVTE system was calculated to be 56–59%, which is comparable to those of current PVT systems. Additionally, the integration of the electrolyzer with the PV module led to an almost 2.5-fold increase in hydrogen production compared to a stand-alone electrolyzer operated at ambient temperature. The analyzed hybrid approach potentially represents a viable and useful alternative for utilization of waste heat energy from PV cells. This approach may further increase the use of photovoltaic technologies as a renewable energy source.

© 2015 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.apenergy.2015.11.078

0306-2619/© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Photovoltaic (PV) technologies employ the photovoltaic effect to convert solar energy into electricity. PV technologies are rapidly becoming an important component of the energy landscape. In fact PV is the third most important renewable energy source in terms of globally installed capacity [1]. To further exploit the potential of PV technologies, the energy output of these technologies needs to be increased. Several strategies have been employed to enhance the electrical conversion efficiency of PV cells, e.g., by the use of new materials [2,3] and through development of sophisticated designs [4,5]. Despite these efforts, the electrical conversion efficiency, the fraction of incoming solar radiation that is converted to electricity, of PV cells currently on the market is still less than 20% [6]. Another strategy to improve the electrical conversion efficiency is to reduce the temperature of the PV cell, as the efficiency is known to decrease at higher temperatures [7].

This rise in temperature mainly originates from the energy that is not converted into electricity and dissipated as heat. Hence, active and passive cooling methods have been employed to remove waste heat, thereby increasing efficiency, and consequently energy output [8].

One approach to further increase the overall energy utilization of PV technologies is to convert the energy removed as waste heat into another useful form of energy, e.g., use of hybrid photovoltaic/thermal (PVT) systems [9]. A PVT system combines a PV module that converts the solar energy into electricity, and a solar thermal collector module that absorbs some of the waste heat for later use (thereby also reducing the temperature of the PV module) [10,11]. The overall energetic efficiency (fraction of incoming solar radiation that is converted to electricity and useful heat energy) of PVT systems ranges from 53% to 68% based on the location and time [12]. Along with the advantage of a high overall energy efficiency, PVT systems also produce more energy per unit surface area [13] and reduce space and installation cost compared to a separate PV panel and a solar heat collector system.

In PVT systems the captured heat energy is typically used for domestic hot water and/or room heating. The need for these applications, however, is intermittent and seasonal, leading to stored energy being wasted. For instance, the overall energy output of PVT systems will be higher when the ambient temperature is high (due to higher level of solar radiation), but the need for hot water and heating during these times will be lower. As a result, a need exists for alternative ways to store and use the waste heat of PVT systems, especially ways that are less subject to intermittency and seasonal requirements. To this end, we propose an integrated system – “a photovoltaic thermal water electrolyzer (PVTE)” – which comprises a PV cell positioned on top of a planar micro-water electrolyzer. This system not only produces the same output as typical PVT systems, i.e., electricity and heat energy, but also produces hydrogen, an environmentally benign and a sustainable energy carrier that can be stored and used for applications such as power generation when solar power is not available or transportation [14]. Naturally, hydrogen storage (e.g., by compression) would require additional energy, but that energy cost is not included in the analyses reported here.

Fig. 1(a) provides a schematic illustration of the PVTE system, while the design and operation of the electrolyzer is illustrated in Fig. 1(b). Part of the electrical energy generated by the PV cell is used for water electrolysis, which is a promising approach for hydrogen production, while the remaining electrical energy is supplied to the grid, similar to conventional PVT systems [6,9]. The excess heat dissipated from the PV cell is captured by the water electrolyzer, which functions as a heat sink, and causes the temperature of the electrolyte in the electrolyzer to increase and approach the temperature of the PV cell. The higher temperature of the electrolyte in the electrolyzer increases the efficiency of the electrolysis reaction and also reduces the over-potentials for H2 and O2 gas evolution at the electrodes [15]. As a result, the dissipated heat energy is utilized to not only produce hydrogen, but also increase the efficiency of the electrolysis. Additionally, the electrolyte in electrolyzer functions as a heat-transport fluid, and the electrolyte at the elevated temperature (exiting the electrolyzer) is circulated to transfer heat to an insulated water tank, similar to the scheme used for domestic hot water and/or room heating in conventional PVT systems. The produced hydrogen can be used, for example, to operate a fuel cell for power generation, or as a fuel for a fuel-cell-based car.

In this paper, we present a comprehensive analysis of the overall efficiency of the proposed PVTE configuration, and compare its performance to that of the PV panel alone. We also estimated the efficiency of the electrolysis process within the PVTE system and compared it to that of a stand-alone electrolyzer. COMSOL Multiphysics® software was used to predict the temperatures of the electrolyte and the PV cell for various values of ambient temperature and solar flux. We also used the simulations to optimize the chamber thickness of the electrolyzer and the flow velocity of the electrolyte with the objective of maximizing the electrical efficiency, thermal efficiency, and the efficiency of water electrolysis. To demonstrate the practical feasibility of the PVTE system, we estimated the hourly and monthly efficiency values of the various processes and the power output using solar irradiation and temperature data for Phoenix, Arizona from the year 2010. The high temperatures in combination with the abundant availability of solar power in Phoenix make this location an attractive location for employing a PVTE.

2. Computational model of PVTE

2.1. Dimension and material properties

In this work, we analyze a unit PV cell (16 cm × 16 cm) with 16 water electrolyzers underneath it. An illustration of the module with the various layers and thicknesses are shown in Fig. 2(a). The PV cell size was chosen such that the cell can be fabricated on a 6 in. silicon wafer. The solar cell portion of this module is sandwiched between two layers of ethylene vinyl-acetate (EVA) covered on top with a protective glass layer and on the bottom with a backing layer (Tedlar) to separate the cell from the electrolyzer. The different materials and the thicknesses of each of these protective layers were chosen based on prior reports on PVTE systems [16,17]. The electrolyzer unit cell is 40 mm long, 40 mm wide, and ~9 mm thick, while the size of the electrolyzer chamber is 20 mm × 20 mm × 0.4 mm (Fig. 2(b)). These values for the electrolyzer dimensions were chosen to be compatible with the standard microfabrication procedures. Two 1 cm² thin-film electrodes are located in the chamber and on a non-electrically conductive glass substrate that is 1 mm thick. A 7 mm thick PDMS slab was chosen as the electrolyzer chamber material due to its low thermal conductivity. Our simulations indicated that the temperature of the PV cell did not change significantly for PDMS slabs with thickness exceeding 7 mm. The PDMS reservoir includes an inlet for the electrolyte at ambient temperature, and two outlets for the heated electrolyte, as well as the formed H2 and O2 gases. Properties of each material used in the COMSOL simulation are listed in Table 1.

2.2. Modeling of the heat transfer processes

To characterize the performance of the PVTE module, we used COMSOL Multiphysics® software to perform finite element analysis.
(FEA) simulations. We first estimated the temperature of the PV cell, and the electrolyte temperature within and at the outlet of the electrolyzer for ambient temperature and a fixed value of solar flux. We systematically studied the effect of the chamber thickness of the electrolyzer and velocity of the electrolyte (coolant) on these temperatures. In the COMSOL simulations, all forms of heat transfer were considered. The analysis was performed for a unit cell and the cell was assumed to be infinitely long on each side and completely insulated. The absorbed heat due to the solar radiation was assumed to be transported from the PV cell to the electrolyzer via conduction. Heat dissipation to the surrounding was assumed to occur by convection and thermal radiation.

The solar energy that is irradiated on to the PV cell is reflected, absorbed, or transmitted. The absorption factor ($A$), the ratio of the absorbed energy to incident solar irradiance, of the PV cell for both crystalline silicon and thin-film solar cells plays an important role in the thermal efficiency of PVT collector systems. The absorbed solar energy that is not converted into electricity is transformed into heat. The fraction of incident solar irradiance that is converted into heat is called the effective absorption factor, which is given by...
\[ A_{\text{eff}} = A - \eta_e \]  

where \( \eta_e \) is the electrical efficiency of the PV cell [18]. Typical values for absorption factors and effective absorption factors can vary between 70–90% and 60–80%, respectively [18]. For the simulations, \( A \) was assumed to be 90% (highest value reported in the literature) and \( \eta_e \) to be 15% (typical efficiency of PV cells). At steady state, the general heat conduction through the module is given by

\[ \nabla \cdot (k\nabla T) = 0 \]  

The heat loss by convection from the various surfaces of the module to the environment is given by

\[ q_{\text{conv}} = -h_c \cdot A \cdot (T_{\text{surface}} - T_{\text{amb}}) \]  

The average wind speed was assumed to be 1 m/s, which means that the heat transfer coefficient \( h_c \) is 6.5 W/m\(^2\)/K [17]. The heat loss by thermal radiation from the PV surface is given by

\[ q_{\text{rad}} = \epsilon \cdot \sigma \cdot (T_{\text{surface}}^4 - T_{\text{amb}}^4) \]  

The average surface emissivity of silicon \( \epsilon \) was assumed to be 0.85 and the Stefan–Boltzmann constant \( \sigma \) is \( 5.67 \times 10^{-8} \) W/m\(^2\)/K\(^4\) [18].

The conjugate heat transfer module in COMSOL allows analysis of the phenomenon of forced convection between the electrolyte as a heat carrier fluid and the high-temperature solar cell as a heat source. The forced convection is described using the continuity and momentum equations, and the heat transfer equation for the electrolyte as follows:

\[ \nabla \cdot (\rho u) = 0 \]  

\[ \rho u \cdot \nabla u = -\nabla p + \nabla \cdot (\mu (\nabla u + (\nabla u)^T)) \]  

\[ p_c u \cdot \nabla T = \nabla \cdot (k \nabla T) \]  

The initial temperature of the electrolyte was assumed to be equal to the ambient temperature [19]. The flow through the electrolyzer was assumed to be laminar and incompressible (based on the flow rates and fluid properties).

### 2.3. Evaluation of overall performance

#### 2.3.1. Electrical efficiency of the PV Module

The operating temperature of the PV cell influences its electrical efficiency. Many parameters affect the temperature of the PV panels, including the ambient temperature, the local wind speed, the solar radiation flux, material properties, and the design of the PV system. Different equations and correlation coefficients have been proposed to estimate the electrical efficiency of the PV module as a function of its temperature [20,21]. In this work we use the equation below:

\[ \eta_{PV} = \eta_{PV(\text{ref})} \cdot [1 - \beta_{PV}(T - T_{\text{ref}})] \]  

where \( \eta_{PV(\text{ref})} \) is the module's electrical efficiency at the reference temperature (with a value of 0.15), \( \beta_{PV} \) is the temperature coefficient (0.0041), and \( T_{\text{ref}} \) is the reference temperature (25 °C) [20].

#### 2.3.2. Energetic and exergetic efficiency of the PVTE module

An important parameter used to characterize the performance of PV systems is thermal efficiency (\( \eta_{\text{thermal}} \)), which is based on the first law of thermodynamics, and is given by [19,22]:

\[ \eta_{\text{thermal}} = \frac{E_T}{E} \]  

\[ E_T = m_{\text{electrolyte}} \cdot C_{\text{electrolyte}} \cdot \Delta T_{\text{electrolyte}} \]  

where \( E_T \) is the thermal output power, \( E \) is the irradiation per unit area, \( m_{\text{electrolyte}} \) is the mass of the electrolyte, \( C_{\text{electrolyte}} \) is the specific heat of the electrolyte, and \( \Delta T_{\text{electrolyte}} \) is the temperature difference of the electrolyte entering and leaving the system.

The first law for thermodynamics can be used to estimate the amount of energy contained in the system, but not the amount of work performed on the external world (outside the system). A temperature difference between the heat source and the heat sink is necessary in order to extract energy as useful work, captured by the second law of thermodynamics. This useful work is also called exergy or available energy. The exergetic efficiency of system is given by [23]:

\[ \dot{E}_{\text{ex}} = \dot{E}_t \left( 1 - \frac{T_{\text{amb}}}{T_{\text{out}}} \right) \]  

where \( \dot{E}_t \) is the thermal output power.

The expressions for overall energetic (1st law) and overall exergetic (2nd law) efficiencies of PVT systems are listed below, respectively

\[ \eta_{PV} = \eta_{PV} + \eta_{\text{thermal}} \]  

\[ \eta_{PV} = \eta_{PV} + \eta_{\text{thermal}} \]  

where \( \eta_{PV} \) is assumed to be equivalent to \( \eta_{PV} \) [23]. We used these equations to calculate energetic and exergetic efficiencies in case of our proposed PVTE system to be consistent with the terminology in the literature.

On the other hand, the final temperature of the water in the heat storage tank can be calculated simply from the equation below [23]

\[ M_t C_t \frac{dT_t}{dt} = (\# \text{ of unit cell}) m_{\text{electrolyte}} C_{\text{electrolyte}} (T_{\text{in}} - T_{\text{in}}) \]

\[ + (h_A T_{\text{amb}} - T_{\text{in}}) \]

where \( M_t, C_t, T_t \), and \( A_t \) are respectively the lumped mass, the weighted-average specific heat capacity, temperature and the outside surface area of the water tank; \( T_{\text{in}} \) and \( T_{\text{out}} \) are the electrolyte temperatures at the inlet and outlet of the tank; \( h_t \) is the heat loss coefficient at the outside surface of the tank.

#### 2.3.3. Efficiency of hydrogen production

To initiate electrolysis of water, DC current is applied to two electrodes separated by the electrolyte. Water decomposes into hydrogen at the cathode and oxygen at the anode. Most of the commercially available electrolyzers are alkaline, using concentrated KOH as the electrolyte [15]. The half reactions taking place on the cathode and the anode in alkaline are given by

Cathode (reduction): \( 2H_2O (l) + 2e^- \rightarrow H_2 (g) + 2OH^- (aq) \)  

Anode (oxidation): \( 2OH^- (aq) \rightarrow 1/2O_2 (g) + H_2O (l) + 2e^- \)  

The overall water splitting reaction via electrolysis is given by

\[ H_2O (aq) \rightarrow 1/2O_2 (g) + H_2 (g) \]  

At standard conditions (25 °C and 1 bar), the splitting of water is a non-spontaneous reaction. The amount of work required to split water under these conditions equals the Gibbs free energy, \( \Delta G^\circ = 237 \) kJ/mol. In general, the minimum amount of work required can be obtained using
where \( z \) is the number of electrons transferred per hydrogen molecule (here \( z = 2 \)) and \( F \) is Faraday’s constant (96,485 C/mol) [24].

Water decomposition is an endothermic reaction where the total amount of energy needed for water electrolysis is equivalent to the change in enthalpy \( \Delta H = 286 \text{ kJ/mol} \). The remaining energy to achieve \( \Delta H^\text{e} \) can be supplied via heat (\( \frac{\Delta Q}{\Delta S} = \frac{\Delta H^\text{e} - \Delta G}{\Delta S} \)). Therefore the total energy demand can be expressed by the thermo-neutral cell voltage as below:

\[
U_{\text{th}} = \frac{\Delta H}{F} \tag{19}
\]

Total energy demand for both \( U_{\text{rec}} \) and \( U_{\text{th}} \) change slightly with temperature. At standard conditions (25 °C and 1 bar) \( U_{\text{rec}} = 1.229 \text{ V} \) and \( U_{\text{th}} = 1.482 \text{ V} \) whereas at 80 °C \( U_{\text{rec}} = 1.184 \text{ V} \) and \( U_{\text{th}} = 1.473 \text{ V} \) [24].

The overall efficiency of water electrolysis can be calculated using the following equation [15]:

\[
\eta_{\text{electrolysis}} = \frac{U_{\text{rec}}}{U_{\text{cell}}} = \frac{1.23 \text{ V}}{U_{\text{cell}}} \tag{21}
\]

As the typical electric potential in alkaline electrolyzers is higher than the thermoneutral voltage, water electrolysis is accompanied by the release of heat. The rate of heat produced is given by the following equation [24]:

\[
\dot{Q}_{\text{gen}} = I \times (U_{\text{cell}} - U_{\text{th}}) \tag{22}
\]

The anodic and cathodic overpotentials are affected by the temperature of the electrodes and the electrolyzer. As the operating temperature increases for a given current density, the overpotentials decrease due to improved reaction kinetics at the electrodes [25,26]. The commercial electrolyzer operates at the voltage of 1.8–2.0 V and increasing the temperatures enables to improve the efficiency of the electrolyzer varies between 70% and 60% [25,26]. The commercial electrolyzer operates at the voltage of 1.8–2.0 V and increasing the temperatures enables to improve the efficiency. The simulations reported in the next section seek to identify conditions (electrolyte velocity, chamber thickness), that lead to an optimal temperature distribution which in turn maximizes the overall system efficiency.

3.2. Optimization of chamber thickness and electrolyzer velocity

The overall PVTE efficiency (electrical, thermal and hydrogen production) depends on the solar radiation, ambient temperature, chamber thickness, and velocity in the chamber. The first two parameters depend on the geographical location, time of the day, and atmospheric conditions (e.g., weather), and are challenging to control. The last two parameters can be controlled through design and operation of the PVT system, and their effects have been investigated previously [9,28]. As expected, an increase in coolant velocity improves the thermal recovery from the solar cell and reduces the temperature difference between the inlet and the outlet. Similarly, a configuration with a larger coolant channel diameter but operated at the same linear flow velocity (so higher volumetric flow velocity) allows more heat to be stored in the fluid; however, the amount of useful work decreases.

In our optimization process, our objective was to maximize the overall efficiency and our constraint was to ensure that the difference in the electrolyte temperature between the inlet and the outlet exceeds 15 °C, a temperature difference needed to achieve the desired doubling in the rate of hydrogen production, as is evident from prior work by Ulleberg: an increase from 25 °C to 40 °C doubles the rate of hydrogen production at a constant voltage [27]. Furthermore, connecting the data shown in Fig. 3a and b indicates that we also should not use a temperature difference larger than 15 °C: Any larger temperature difference for any given channel diameter rapidly reduces the efficiency to a value (well) below 40%. Fig. S2 (see supplementary information) shows the flowchart for this optimization indicating the equations used, the variables, and the fixed parameters.

To evaluate the overall efficiency of the system, we considered the efficiency of the PVT and the electrolysis process described by the equation below:

\[
\eta_{\text{PVTE}} = \eta_{\text{PVT}} \times \eta_{\text{electrolysis}} \tag{23}
\]

We performed the simulation on the entire system for different chamber thicknesses and fluid velocities under standard test conditions (irradiance of 1000 W/m² and 25 °C) to estimate the optimum parameters. We varied the thickness of the chamber from 1.0 mm to 0.2 mm in our simulations, guided by prior work on PEM water electrolyzers, which often have 1 mm high channels...
to allow for higher rates of gas removal and bubble management in stacks of the cells [29,30]. The linear flow velocity values in the chamber were varied between ~0.3 mm/s and ~2.0 mm/s.

Fig. 3(a) shows the temperature difference between the inlet and the outlet of the electrolyte \((T_{\text{out}} - T_{\text{amb}})\), as a function of electrolyte flow velocity for different chamber thicknesses. The temperature difference decreases (i) with increasing flow rate due to the lower residence time, and (ii) with increasing chamber thickness due to the higher heat capacity of the fluid. A maximum temperature difference of 27 °C was observed for a velocity of 0.34 mm/s when using a 0.2 mm thick chamber. An increase of 15 °C in the temperature of the fluid between the inlet and outlet at the radiation of 1000 W/m² provides a thermal efficiency between 40% and 50%, which is in the range of thermal efficiency for PVT systems [31]. On the other hand, this temperature increment leads to double the rate of hydrogen production at a constant voltage [27]. Thus the data points above the dashed line in Fig. 3(a) satisfy our first objective of the optimization process. Note that using a higher electrolyte velocity or taller chambers will lead to higher overall efficiency (Fig. 3(b)), but lower hydrogen production due to a smaller temperature difference between the inlet and the outlet. As the aim of the proposed PVTE system is to maximize both overall efficiency (so it becomes comparable to those of PVT systems) and hydrogen production, we applied a design constraint on the minimum allowable temperature difference.

Fig. 3(b) shows the overall efficiency \((n_{\text{PVTE}})\) as a function of the electrolyte flow velocity for different values of chamber thickness. The overall efficiency increases significantly upon increasing the electrolyte velocity and/or the chamber thickness. Higher electrolyte flow velocities lead to better heat removal, hence a lower operation temperature of the PV module, thus enhancing its efficiency. This effect seems to dominate over the increase in the efficiency of the electrolysis process when operating at lower flow velocities (resulting in a higher electrolyte temperature and thus better kinetics in the electrolyzer). Similarly, an increase in chamber thickness enhances the capacity for heat removal (higher volumetric flow rate of electrolyte), which in turn leads to a lower temperature of the PV module.

The data points above the dashed line in Fig. 3(a) are marked with orange with black outlines in Fig. 3(b); these data points correspond to the parameter values for which the temperature difference exceeds 15 °C. Constrained by the condition of a minimum temperature difference of 15 °C, a maximum overall efficiency of 43% can be achieved when using a chamber thickness of 0.4 mm and operating at an electrolyte velocity of 1.36 mm/s. Naturally, different values of solar radiation and ambient temperature may lead to different optimum values for these parameters, yet the observed trends are expected to remain the same. In the following sections, we will use the identified optimum values of the chamber thickness (0.4 mm) and fluid velocity (1.36 mm/s) to estimate the hourly and annually efficiency of the PVTE system.

### 3.3. Hourly variations of PVTE efficiency

To evaluate the practical feasibility of the PVTE system, we examined the hourly performance of the PVTE system using solar radiation and temperature data from Phoenix, AR in May 2010 [32]. This data was chosen because this location is designated as Class I by the U.S. Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL), meaning that the solar radiation and temperature values are complete and highly accurate [32]. We used the optimized values for the chamber thickness and the velocity, 0.4 mm and 1.36 mm/s, respectively. Fig. 4(a) represents the average hourly radiation and ambient temperature data, along with the simulated temperatures of the PV cell in the presence and absence of the electrolyzer. As expected the temperatures of the PV cell within the PVTE and the stand-alone PV cell peaked at noon, at temperatures of 65.3 °C and 48.7 °C respectively. More importantly, addition of the electrolyzer reduced the temperature of the PV system with the maximum reduction (~17 °C decrease) occurring at noon [6,33]. The electrical efficiencies of these PV cells are shown in Fig. 4(b). The PV cell embedded in PVTE performed better than the stand-alone PV cell due to the active cooling of the PV cells by electrolyzer. The improvement in the electrical efficiency was most significant at noon time. Fig. 4(b) also shows (right vertical axis) the gain in electrical power output when the PVTE module is used instead of the stand-alone PV module. For monocrystalline and polycrystalline cells, the electrical power output efficiency decreases by 0.5% per °C temperature increase [34]. Hence, a reduction of ~17 °C of the PVTE compared to the stand-alone PV module led to an improvement of ~8% in power output efficiency.

The overall PVTE efficiencies calculated based on 1st (Eq. (13)) and 2nd (Eq. (14)) law are shown in Fig. 4(c). As explained before, the 1st law represents the heat gain from the system whereas the 2nd law indicates the work potential. Although the amount of heat recovery increased for the solar cell at noon, the energetic PVTE effi-
ciency decreased from 60% to 56% due to heat loss from the system. Of this 4% drop in efficiency, 2.5% resulted from a decrease in waste heat recovery and 1.5% from a decrease in electrical efficiency. On the other hand, the exergetic PVTE efficiency peaked at noon even as the electrical efficiency decreased, because the work potential increased. The temperature difference between the inlet and outlet of the electrolyzer is the key parameter for exergetic thermal efficiency, and peaks at \( \pm 17 \) °C at noon, evident from Fig. 4(a).

Fig. 4(d) compares the hydrogen production efficiency at the actual temperature in the PVTE module (see Fig. 4(a)) and at ambient temperature, as a function of the hour of the day. Again, as expected, the hydrogen production efficiency peaked at noon because the temperature of the PV module (~48 °C) and consequently of the electrolyzer was highest at that time. Furthermore, the higher operating temperatures of the electrolyzer within the PVTE module led to a higher efficiency of hydrogen production compared to the efficiency of the same electrolyzer operating at ambient temperature. The increase in hydrogen production efficiency peaked at noon time, 78% for the electrolyzer within the PVTE compared to 74% for the electrolyzer at ambient temperature. The right vertical axis of Fig. 4(d) shows the extent by which the hydrogen production increases when operating the electrolyzer within the PVTE (and thus at higher temperature) as opposed to electrolyzer at ambient temperature. When the hydrogen production rate was 25 mA/cm\(^2\), the efficiency was 74% when the electrolyzer operated at ambient temperature of 28 °C. Within the PVTE, the waste heat from the PV module resulted in an increase in the electrolyzer temperature to \( \pm 48 \) °C, which led to increase in the hydrogen production rate to 60 mA/cm\(^2\) for the same applied potential [27], an almost 2.5-fold increase in hydrogen production.

### 3.4. Monthly variations of PVTE efficiency

Similar to the hourly analysis in the previous sub-section, we examined the monthly variations in the electrical, thermal, and hydrogen production efficiencies using the climate data for Phoenix, AZ from 2010 [32]. All data shown in Fig. 5 represent the average values for the efficiencies for each month. Fig. 5(a) indicates that the electrical efficiency and the power output of the PV module within the PVTE system were higher than the corresponding values for a stand-alone PV because of the enhanced waste heat removal in the PVTE system. The electrical efficiency decreased during summer months due to the higher ambient temperatures causing an increase in the temperature of the PV module. In certain
summer months the improvement in electrical efficiency of the PVTE compared to a stand-alone PV led to an increase of more than 5% in the average power output. The gain is higher during summer because the effect of active cooling by the electrolyzer (reducing the temperature of the PV module) is more dominant when the ambient temperature is higher.

Both the energetic and exergetic efficiencies of the PVTE decreased during summer (Fig. 5(b)), mainly because the higher ambient temperature during the summer leads to a decrease in the difference between the electrolyte and ambient temperature. Although the flow rate can be increased to increase the thermal gain and reduce the operating temperature of PV cell, this increase in flow rate will decrease the efficiency of the electrolysis process and the exergetic efficiency, which in turn will adversely affect the overall efficiency of the system. The energetic and exergetic energy values for the thermal gain increased during summer months (Fig. 5(d)), even though the energetic and exergetic PVTE efficiencies decreased. Overall, the energetic efficiencies of the PVTE system varied between 56% and 59% during the year, which is comparable to the values reported previously for PVT systems (52–58%) [12].

We also estimated the monthly variations in the hydrogen production efficiency and the factor by which it increases as a function of operation temperature (Fig. 5(c)). The analysis results show that the higher solar radiation and higher ambient temperature in the summer months has a positive effect on the efficiency of hydrogen production, with the highest efficiency value obtained in the month of July for both the integrated PVTE system and the electrolyzer alone when operating at ambient temperature. The gain in efficiency of H₂ production in the PVTE system compared to that in an electrolyzer at ambient temperatures was higher from June to September as a result of higher electrolyte temperatures in the PVTE system. More importantly, this analysis shows that the amount of H₂ produced in the PVTE system was at least 2-fold higher for seven months of the year compared to the amount of H₂ produced in the electrolyzer alone, when operating at ambient temperatures.

4. Conclusion

This paper reported an energetic analysis of a photovoltaic system that integrates a photovoltaic (PV) module with an electrolyzer, referred to as a photovoltaic thermal water electrolyzer
(PVTE). Active cooling of the PV module by the electrolyte in the electrolyzer reduces the temperature of the PV module and consequently increases the electrical efficiency. The heat absorbed by the electrolyte enhances the reaction kinetics of the electrolysis process leading to more efficient production of hydrogen.

We used FEA simulations to optimize the geometry (specifically electrolyzer dimensions) and operating conditions (specifically electrolyte flow rate) to maximize the overall energy efficiency of the PVTE system and the amount of hydrogen produced. Then we used the optimized geometry and operating conditions to perform a comprehensive energy analysis (daily and annually) using solar radiation and ambient temperature data from Phoenix, Arizona. The improvement in power output gain of the PVTE system compared to a stand-alone PV module was highest during afternoon and during summer months, when the ambient temperatures are the highest. Similarly, the increase in the amount of hydrogen production of the PVTE system compared to an electrolyzer operating at ambient temperature was highest during afternoon and during summer months.

Overall the use of PVTE system to generate hydrogen provides a more useful, versatile and efficient way to utilize the removed waste heat compared to current PVT systems. In addition to the water and/or room heating, the produced hydrogen can be used for other energy applications, such as powering fuel-cell-based cars. The inclusion of additional elements for electrolysis (electrodes, voltage source, etc.) in the PVTE system will increase the complexity and cost compared to current PV system. The added benefit of hydrogen production, however, is expected to compensate for the increased cost and complexity.

In the current analysis, we assumed a constant flow rate of the electrolyzer. The flow rate, however, can be regulated based on active feedback from a thermometer and pyrheliometer that measure the temperature of the PVTE system and the solar radiation value, respectively. As flow rate determines the time scale of heat transfer and consequently the temperatures at various locations of the PVTE system, active feedback control of the flow rate will enable control over the individual output efficiencies depending on time of the day and/or year, e.g., higher thermal output during winter or higher electrolysis output during summer.

Acknowledgements

We acknowledge support for this work (MEO and RGN) as part of the ‘Light-Material Interactions in Energy Conversion’ Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0001293. We also acknowledge financial support from the National Science Foundation under awards CMMI 03-28162 and CMMI 07-49028 to Nano-CEMMS, a Nano Science & Engineering Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0001293. We also acknowledge financial support from the Office of Basic Energy Sciences under Award Number DE-SC0001293. We also acknowledge financial support from the Office of Basic Energy Sciences under Award Number DE-SC0001293.

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.apenergy.2015.11.078.

References