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ABSTRACT: The metastable zone in solution crystallization is
typically defined as a region of the phase diagram in which no
appreciable nucleation occurs. Existing theoretical explanations
attribute the appearance of this zone to the low probability of
nucleation brought forth by the path-dependency of the
nucleation rate. In this work, for the first time we present
experimental data for several compounds that contradict this
description. We show that the widely adopted theoretical
approach which considers a time-dependent nucleation rate does
not capture the observed stochastic nature of nucleation in these
experiments. Instead, the experimental results are successfully
explained through a probability analysis based solely on the
energy barrier to nucleation. In this context, for a system that is
slowly supersaturated, we develop the idea of an “induction supersaturation” as a lower boundary of metastability that does not
depend on the path of the experiment. This work critically examines the limitations of the existing stochastic methods that
describe nucleation under variable supersaturation and calls for a fundamental shift in the traditional view of the processes
responsible for the manifestation of the metastable zone.

1. INTRODUCTION

Formation of crystals from solutions is of great importance in
several areas of science and technology.1−6 The metastable zone
in solution crystallization is defined as a region of the phase
diagram characterized by the absence of appreciable nucleation.7

Characterization of the width of this metastable region (also
known as the metastable zone width, MZW) for a compound is
considered to provide an important guideline for the design and
operation of industrial crystallizers.8 Thus, the prediction of the
probability of nucleation at any solution condition when a system
is gradually driven toward phase transformation is of significant
interest.
The driving force for crystal nucleation is the change in the

chemical potential of the solute, Δμ, resulting from the phase
transformation. This chemical potential difference Δμ is
expressed through the supersaturation, S, of the solute, which
is defined here as the ratio of solute concentration C to its
solubility Ceq (S = C/Ceq).

9 Experimentally, the MZW of a
compound may be determined by gradually increasing the
supersaturation of the system starting from an S ≤ 1 to a
supersaturation Sn at which the first crystals are observed. This Sn
may be obtained either by lowering the temperature of a solution
(cooling crystallization at a constant composition) or by
increasing the concentration the solute (evaporative crystal-
lization at a constant temperature).7

The most common experimental technique employed to
determine the MZW of a solute is cooling crystallization with

constant rate of cooling. Studies that use this technique
consistently show that greater rates of cooling result in larger
values of undercooling (i.e., wider metastable zone width).10,11

These observations give rise to the notion that the MZW is a
kinetic phenomenon that is controlled by the path of the
experiment. As a result, over the past several decades, theoretical
approaches developed to predict the boundary of metastability
have focused on linking the path of the experiment (rate of
cooling) to the rate of the nucleation.12−17 These models
typically consider the MZW as a deterministic phenomenon.
Nucleation, however, is inherently a stochastic process, and
hence one expects a variability in an experimentally determined
limit of metastability. Analysis of such variability in the time of
nucleation for systems nucleating isothermally (i.e., at constant
temperature or supersaturation) was discussed by Sear.18

Recently, in an experimental study that used evaporative
crystallization at constant temperature, He et al. (from our
group) have reported a seemingly path-independent critical
supersaturation (MZW) observed for several solutes.19 Intrigued
by this unexpected result that contradicts the typical observations
from cooling crystallization, Braatz and co-workers, along with
us, have developed a rigorous stochastic model to estimate the
“mean time” of nucleation tn in these experiments.20 This work
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asserted that the proposed probabilistic model predicted
nucleation times observed by He et al. satisfactorily. Also
motivated by He et al.’s experimental results, Peters has
independently suggested a similar simplified stochastic approach
to predict the supersaturation of nucleation Sn in a system that is
slowly supersaturated.21 In his work, Peters emphasized that the
small supersaturation approximation employed earlier in another
stochastic model by Kashchiev and Firoozabadi22 is applicable
only to a special situation. In a recent study, Kadam et al. have
discussed a similar probabilistic model to explain the variability in
the MZW of a solute observed during crystallization with
constant cooling rate.23−25

These theoretical approaches relate the probability of
nucleation in a metastable zone to the path of the experiment
using a time-dependent rate of nucleation as the variable that
controls the MZW. This thought process is shared by many
deterministic models as well.26 The implication suggested by He
et al.’s experimentsthat a path-independent metastability
boundary may exist for solutescannot be reconciled within
the scope of these models. By appearing to predict tn in He et al.’s
experiments, the current approach adopted by many researchers
suggests that the critical supersaturation observed by He et al. is
of no consequence. However, He et al.’s experiments were
carried out with a broad class of compounds under a wide variety
of experimental conditions. Hence the possibility that a
compound-specific and path-independent limit of metastability
may exist for all of these materials is too intriguing to be
dismissed as a simple numerical coincidence. Our present work
aims to resolve this apparent contradiction and to better
understand the elusive nature of the metastability limit.
In this work, we report the results from a large number of

MZW experiments performed with various compounds using
isothermal solvent evaporation. We analyze the results through the
existing stochastic approach and show that this approach cannot
explain the observed trends in the data satisfactorily. We discuss
the possible reasons for this disagreement and then introduce a
new thought process that explains the data without relying on a
few important assumptions that underlie the current models.
From this new perspective, the path-independent critical
supersaturation, termed here as “induction supersaturation”,
can be understood as a “mean” lower boundary of the metastable
zone. We conclude the discussion by emphasizing that the
popular notions(i) the MZW is a function of the rate of
nucleation, and (ii) the solubility boundary is the lower limit of
metastabilityneed not necessarily be correct.

2. EXPERIMENTAL SECTION
2.1. Experimental Setup. Our experiments are based on the

crystallization of solutes at a constant temperature through solvent
evaporation. The experimental setup used in this study was described in
detail in our previous publication.27 In summary, the setup consisted of a
microfluidic crystallization platform that can hold small (5 μL) droplets
of aqueous solution. These droplets were subjected to slow evaporation
of solvent. The rate of evaporation was regulated by altering the
geometry of the evaporation chambers. The evaporating droplets were
monitored using an optical microscope, and optical micrographs of the
droplets were collected once every 15 min using an automated imaging
system. The time of appearance of the first crystal in the droplet was
established from these images.
2.2. Methods. The experiments were performed on aqueous

solutions of a wide variety of compounds including organic acids
(succinic acid, adipic acid), an amino acid (L-histidine), a pharmaceutical
compound (paracetamol), and a protein (hen egg-white lysozyme,
HEWL). The general methods for solution preparation and handling

were discussed in detail our previous publications.19,27 All solutions were
filtered through 0.2 μm syringe filters before depositing the droplets on
clean silanized glass coverslips. A change in the surface characteristics of
the glass coverslip did not significantly influence the outcome of the
experiment.28 Also, no crystals were observed to stick to the glass
coverslip in our experiments, suggesting that crystal nucleation occurred
in solution rather than on the surface. In addition, computational fluid
dynamic modeling of the evaporating droplet revealed that natural
convection is sufficient to ensure spatial homogeneity of the solute
concentration inside the droplet, and no “drying fronts” at the edge of
the droplets occur.20 These observations lead us to believe that the
sources of heterogeneous nucleation were significantly minimized in our
experiments.

The experiments were conducted with various initial concentrations
of solutes. We ensured that the droplets were unsaturated at the time of
loading into the evaporation chambers. For hen egg-white lysozyme, the
protein was buffered in a 0.1 M sodium acetate buffer at pH 4.5, and
sodium chloride was used as the precipitant. The initial concentration of
sodium chloride was varied such that the protein/salt ratio spanned a
range of 40−100 (mg/mL)/M, whereM denotes the molarity of the salt
in the droplet.27 The path of the experiment was varied by changing the
initial concentration of the solute and the rate of solvent evaporation.
The experimental temperatures are listed in Table 1. Almost all of our

experiments resulted in the formation of a single crystal in the
evaporating droplet for all the compounds studied. Rarely, a few
experiments with droplets of HEWL resulted in two crystals. None of
the experiments produced more than two crystals.

2.3. Estimation of Supersaturation. Typical experimental times
in this study ranged from 15 to 120 h depending on the rate of
evaporation of the solvent. The rates of evaporation were determined
through calibration of the evaporation chambers using drying times of
droplets of different compositions.27 A mass balance model that
expresses the concentration (C) of the solute as a function of time is
provided in the Supporting Information. Solubility (Ceq) data (see Table
1) for various solutes at the experimental temperatures were obtained
from respective references.29−32 In the case of HEWL, the
concentrations of both the buffer salt and the precipitant vary as the
solvent (water) evaporates. This fact was taken into consideration in
calculating the solubility of HEWL at any time. The supersaturation S
was calculated as the ratio S = C/Ceq.

Crystal growth rates for the solutes studied, as determined from the
macroscopic crystal growth experiments, are faston the order of 0.1
μm/s for organic solutes such as succinic acid and paracetamol,33,34 and
of 0.01 μm/s for proteins such as HEWL.35 Under the assumption that
these growth rates are independent of the size of the crystal, the time
needed to grow a just-nucleated crystal to a detectable size (∼5 μm) is
expected to be less than the time interval between two successive images
of a droplet. This expectation allows us to narrow down tn to within 15
min. The corresponding uncertainty in the calculated Sn depends on the
rate of generation of supersaturation (dS/dt) at the time of nucleation
(see Supporting Information). The median uncertainty in Sn that
corresponds to the 15 min uncertainty in tn was calculated as 2.7% for
succinic acid, 4.6% for L-histidine, 5.4% for adipic acid, 7.9% for
paracetamol, and 9.9% for HEWL.

Table 1. Experimental Temperatures and the Corresponding
Solubilities for Various Solutes Studied

compound temperature (°C) solubility (g/L) reference

succinic acid 23.0 71.1 29
L-histidine 18.0 36.9 30
adipic acid 20.0 18.2 29
paracetamol 21.5 13.6 31
hen egg-white lysozyme 23.6 4.0−14.0a 32

aThe solubility of hen egg-white lysozyme at the time of nucleation
varies in each experiment due to an increase in concentrations of the
precipitant (NaCl) and the buffer salt with time.
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3. RESULTS
3.1. Data Trends. While the most common technique

employed in the literature in determining the MZW of
compounds is cooling crystallization, our experiments used
evaporative crystallization. To enable future translation of the
results between the techniques, we analyze the data in terms of
the driving force for nucleation. This driving force, the change in
the chemical potential of the solute Δμ due to phase
transformation, is related to the supersaturation S through the
functionality Δμ = kBT ln(S), in which kB is the Boltzmann’s
constant and T is the absolute temperature. Thus, one may
equate the rate of change of driving force d[Δμ(t)/kBT]/dt to
d[ln(S)]/dt. Below in Figure 1a we show Sn from our

experiments as a function of d[ln(S)]/dt at the time of
nucleation for succinic acid. Figure 1b depicts the same
information for HEWL. For the sake of brevity, hereafter we
denote the variable d[ln(S)]/dt with r and that at the time of
nucleation with rn.
Figure 1a,b shows that at any given rn the observed values of Sn

scatter around an average value ⟨Sn⟩ for both of these
compounds.36 This scatter is expected given the stochastic
nature of the nucleation process. The data indicate a trend in
which the average ⟨Sn⟩ reached in the limit of r→ 0, denoted here
by ⟨Sn⟩0, is well above unity. As r increases, ⟨Sn⟩ increases above
⟨Sn⟩0, a result that is in general agreement with the reports from

the literature. Our observations on all of the compounds studied
are similar to those from succinic acid and HEWL. As with these
compounds, for small values of r, a compound specific ⟨Sn⟩0 that
appeared to be independent of r was found for all the other
solutes.
Another interesting feature exhibited by the data is that for

small values of r, crystal nucleation for the compounds occurred
in a narrow band of Sn around ⟨Sn⟩0. This aspect is seen clearly
from the spread of Sn around the dotted lines in Figure 1a,b. For
example, in the experiments with succinic acid, when rn < 0.05
h−1, the resulting time required to reach Sn after crossing the
solubility boundary ranged from 7 to 35 h. However, we observed
no discernible variation in ⟨Sn⟩ for these widely spread nucleation
times as shown in Figure 1a. This wide range of times to
nucleation indicates the lack of a correlation between Sn and the
time the droplet spent above the solubility boundary before
nucleation occurred. These results emphasize the path-
independent nature of Sn and suggest that when a system is
slowly supersaturated, the limit of metastability may not be
controlled by the time-course of the experiment.

3.2. Probability Distributions. From these observations,
the data from our experiments may be classified broadly into two
categories: (i) experiments at low r in which Sn appears to be
path-independent and (ii) experiments at high r in which Sn is
clearly affected by the path of the experiment. Figure 1a,b
suggests that, when r is low, the probability of nucleation at any S
may follow the same statistical distribution. Thus, the variability
in Sn around ⟨Sn⟩0 at low r can be used to extract information
about the stochastic nature of the nucleation process. For this
purpose, we define a cumulative probability of nucleation, Ps, by
considering the fraction of droplets that contained a crystal by
the time their supersaturation reached S.
In our experiments r increases gradually as the experiment

progresses due to the nonlinear dependence of the concentration
of solute on time (see Supporting Information). Any r
experienced by the droplet during the course of the experiment
is always lower than rn. Hence we established a “low-r” regime for
each solute by considering only the data points for which rn is
lower than a chosen cutoff value. These cutoff rn values were
chosen such that a lower cutoff did not significantly alter the
distributions of Ps. Note that considering a lower cutoffmay have
reduced the number of data points available to construct each
distribution. The chosen cutoff rn values, along with the numbers
of data points used to generate the cumulative distributions, are
shown in Table 2 for each case.

Figure 2 shows the statistical distributions of Ps for the five
compoundssuccinic acid, L-histidine, adipic acid, paracetamol,
and HEWLin the low-r regime. We remind the reader that for
each compound, the data shown in Figure 2 were obtained from
solution droplets that followed various time courses of
supersaturation. These different paths of experiments were

Figure 1. Plots of supersaturation of nucleation as a function of the rate
of change of driving force at the time of nucleation for (a) succinic acid -
147 experiments, and (b) HEWL - 198 experiments. The dashed lines
are guides to the eye to indicate the trend of an average value of Sn with
varying r. As r → 0, the droplets nucleated at supersaturations that are
distributed around an asymptotic limiting supersaturation ⟨Sn⟩0 that was
well above unity.

Table 2. Number of Experiments and Cutoff rn Values Used in
Constructing the Cumulative Probability Distributions
Shown in Figure 2

compound number of experiments cutoff rn (h
−1)

succinic acid 59 0.05
L-histidine 40 0.10
adipic acid 33 0.22
paracetamol 44 0.25
hen egg-white lysozyme 150 0.43
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achieved by changing either the rate of solvent evaporation or the
initial solute concentration, or both.

Three aspects are of particular interest in the data presented in
Figure 2. First, the supersaturation by which about half of the
drops have produced crystals (i.e., Sn at Ps ≈ 0.5) is fairly large,
ranging from ∼1.5 for succinic acid to ∼3.7 for hen egg-white
lysozyme. These data show that, when opportunities for
heterogeneous nucleation are mitigated, a crystallizing system
can sustain large degrees of supersaturation without crystal
formation. Second, the probability curves are compound-specific.
Note that Ps was obtained from experiments in which the
observed Sn was independent of r. Hence the spread for different
solutes in Sn at Ps = 0.5 suggests that material properties must also
be controlling Ps along with supersaturation, and time is not a
governing factor. A third aspect of interest is that almost all of the
droplets for a given compound have crystallized by the time the
supersaturation reached a high value Smax (e.g., Smax ≈ 2.0 for
succinic acid and ∼6.6 for hen egg-white lysozyme; see Section
4.6). This result indicates that, when the system is supersaturated
slowly, a high supersaturation exists beyond which the system
may not sustain metastability and nucleation becomes imminent.

Figure 2. Cumulative probability distributions of nucleation around
⟨Sn⟩0 in the low-r regime for five systems: succinic acid, L-histidine,
adipic acid, paracetamol, and hen egg-white lysozyme. Each data point
shown represents a separate experiment.

Figure 3.Comparison of (tn− tsat) between experimental data andmodel predictions for (a) succinic acid, (b) hen egg-white lysozyme, (c) paracetamol,
and (d) adipic acid. Each data point shown represents a single experiment. The dotted line indicates the Y = X line. The kinetic parameters A and B of eq
2 obtained from least-squares regression for each case are given in the inset of each panel.
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3.3. Predictions from the Existing Models. From the
existing theoretical explanations, a metastable zone can only be
defined with reference to the experimental path and the
supersaturation dependence of the rate of nucleation.20,21,26,37,38

This viewpoint, as interpreted by Peters,21 leads to the
conclusion that in the limiting case of very slow rates of
generation of supersaturation nucleation must occur at the
solubility boundary (i.e., Sn→ 1 as r→ 0). The experimental data
shown in Figure 1a,b appear not to conform to this prediction.
Moreover, according to these stochastic models, experiments
that started from different initial conditions and followed
different paths must result in different probability distributions
in Sn. Again, the cumulative probability distributions of Ps shown
in Figure 2, which were obtained from the spread of Sn as rn → 0
in Figure 1, are not in line with this inference.
To investigate these unexpected observations further, below

we analyze the results through the predictions of the time of
nucleation tn and the supersaturation of nucleation Sn using the
existing theoretical arguments. Here we follow the analysis of
Goh et al.20 because this work provides explicit expressions for
the probability distributions of tn in the evaporating micro-
droplet. In this model the rate of change of driving force is
automatically accounted for in the S(t) functionality, and no
special distinction is made with respect to the effect of r on the
probability of nucleation.39 For this reason, we consider all of the
data points (i.e., those from both the low-r and the high-r
regimes) in the following analysis.
3.3.1. Mean Time of Nucleation (tn). In a system with time-

varying supersaturation, the stochastic formulation by Goh et
al.20 specifies the mean time of nucleation tmean (defined as the
mean induction time for the nucleation of at least 1 crystal in the
droplet), as

∫ κ= κ
∞

− ∫t t t t( )e ds s
mean

0

( ) dt
t

sat
(1)

in which t denotes time, κ(t) is the time-dependent rate of
nucleation in the entire system, and tsat is the time at which the
system has reached the solubility boundary during the gradual
increase of driving force. The nucleation rate κ(t) in the system
with a time-dependent volume V(t) is considered to be given by
the product J(t)V(t), where J(t) is the steady-state rate of
nucleation per unit volume of solution. J(t) is expressed through
a phenomenological equation such as

= −J t AC t B S t( ) ( ) exp{ /ln [ ( )]}2
(2)

Equation 2 is based on the classical nucleation theory (CNT).40

CNT expresses the steady-state rate of nucleation through a
combination of a kinetic pre-exponential factor A, the solute
concentration C(t), and the normalized energy barrier to
nucleation B/ln2[S(t)] with B being a compound-specific
parameter and S(t) being the time functionality of super-
saturation.
In line with the analysis of Goh et al., here we treat the time of

nucleation tn from each experiment as equivalent to tmean
expressed through eq 1. Since no nucleation occurs until the
droplet crosses the solubility boundary, we consider the lower
limit of all integrations in eq 1 to be given by tsat. Using the least-
squares procedure outlined by Goh et al., we find the values of A
and B that best describe the data obtained on various systems. If
the model represents the experimental system well, one should
be able to obtain a unique set ofA and B that matches tn with tmean
for all data points with minimal error.

Figure 3a−d shows the predictions of tn from eq 1 used in
combination with eq 2. Parameters A and B found from the least-
squares regression are shown in the insets. In these figures, the
time the droplets spent after crossing the solubility boundary, (tn
− tsat), was compared between the experiments and the model.
One may consider that the model predictions agree well with the
experimental data for paracetamol and hen egg-white lysozyme
for many data points, but for not all of them. The agreement for
adipic acid is fair. Usually, in the literature, the quality of fits
similar to those shown in Figure 3b,c is taken as a confirmation
that the underlying theory describes crystal nucleation in a
metastable zone satisfactorily. On the basis of such plots,
literature reports typically assert that the width of the metastable
zone is a function of the rate of nucleation through eq 1.
However, the poor quality of the fit seen in Figure 3a for succinic
acid raises concerns regarding this traditional argument.
In the literature, disagreements as seen in Figure 3a are usually

attributed to the inaccuracy in the nucleation kinetics
information employed by the model. For example, Chen et al.
have attempted to explain the observed disagreements in glycine
nucleation times by considering the possibility of a non-
monotonic variation of the rate of nucleation with time.41

These authors have argued that when nucleation follows a
nonclassical pathway (e.g., a pathway consisting of two-step
nucleation42), then eq 1 may not describe the time of nucleation
when the rate of nucleation is considered to be given by eq 2.
While such possibilities cannot be discounted, as we discuss
below, a simpler explanation may be provided for the observed
disagreements by critically examining the origins of eq 1.
Below we show that the disagreements between the model and

data are too systematic to be attributable to inaccurate nucleation
rate parameters. The following analysis highlights that the
“excellent agreement” between the model and the experiment,
perceived in terms of the time of nucleation (tn), may not
necessarily exist when one compares the model predictions in an
alternate coordinate space of the supersaturation of nucleation
(Sn).

3.3.2. Mean Supersaturation of Nucleation (Sn). During a
metastable zone experiment, one is primarily interested in the
average supersaturation of the system at which nucleation occurs.
The stochastic approach used in deriving eq 1 specifies this mean
supersaturation only in reference to the path of the experiment,
i.e., the mean supersaturation of nucleation Smean is simply the
supersaturation experienced by the system at tmean. In Figure 4a−
d we compare Smean in our experiments (= Sn @ tn) to Smean @
tmean obtained from the model.
A systematic deviation between the predictions of the model

and the experimental data emerges as one examines Figure 4a−d.
In fact, one finds no correlation between the experimental data
and the predicted values of Sn for any compound! For example,
for succinic acid (Figure 4a), regardless of the initial conditions of
the experiment, the model never predicts nucleation to occur
earlier than a time that corresponds to a supersaturation of 1.4.
But experimentally we see that nucleation occurred anywhere
between Sn = 1.1 to 3.5 with no discernible pattern. This
disagreement cannot be attributed to the possible uncertainty in
the experimental Sn, which is only about 3% for this case. Similar
trends in the data are seen for other compounds.
The calculations of both Sn from tn (experimental) and Smean

from tmean (model) use the same information on the path of the
experiment, i.e., the same S(t) functionality. Yet, one sees no
correlation between the predicted Smean and the actual Sn for any
solute. This observation indicates that any agreement seen in the
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time comparisons (Figure 3a−d) is fortuitous. In other words,
the seemingly minor differences between the predicted tmean and
the experimental tn in reality are very significant in terms of the
supersaturation at nucleation. Figure 4a−d strongly suggests that
somehow the widely used theoretical approach to model
nucleation in a metastable zone is unable to capture the physics
of the process through eq 1. The discussion below focuses on
identifying the cause of the disagreement seen in Figure 4a−d
through a critical examination of the development of the
stochastic model.

4. DISCUSSION

4.1. The Stochastic Formulation. The mean time of
nucleation tmean given by eq 1 represents a probability density
function (PDF) f(t) defined by20

κ= κ− ∫f t t( ) ( )e s s( ) dt
t

sat (3)

in which the variables are as defined in eq 1. Equation 3 specifies
the probability for nucleation to occur within an infinitesimal
time interval dt of t, i.e., in a time interval (t, t + dt). The

corresponding cumulative distribution function (CDF) for the
droplet to contain at least one nucleus by a time t, F(t), is

= − κ− ∫F t( ) 1 e s s( ) dt
t

sat (4)

Equations 3 and 4 are derived through the survival probability
analysis of a nucleating system. In this thought process, the
formation of a single nucleus represents a transition in the state of
the system from having one less nucleus to having current
number of nuclei. The time evolution of probabilities for such
transitions are captured by the Master equation20,43 as a set of
ordinary differential equations given by

κ= − =
P t

t
t P t P

d ( )
d

( ) ( ), (0) 10
0 0 (5)

κ= − − = =−
P t

t
t P t P t P n

d ( )
d

( )[ ( ) ( )], (0) 0, 1, 2, ...n
n n n1

(6)

in which Pn(t) represents the time evolution of the probability
that a system contains n nuclei. These differential equations

Figure 4.Comparison of Sn between the experimental data and themodel predictions for (a) succinic acid, (b) hen egg-white lysozyme, (c) paracetamol,
and (d) adipic acid. Each data point shown represents a single experiment. The dotted line indicates the Y = X line. The kinetic parameters A and B of eq
2 used for each case are given in Figure 3, panels a−d, respectively.
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represent a particulate process described as a nonstationary
Poisson process.
This description of the time evolution of a stochastic system is

based on the theorems of stochastic process analysis which find
applications in the solution of several fundamental problems,
such as the study of Brownian motion.43 Central to the
application of the general stochastic theoretical framework to
the nucleation problem is the premise that the probability of
nucleation in an infinitesimal time interval dt is given by κ(t) dt in
which κ(t) is the time-dependent rate of nucleation in the entire
system. Below in Sections 4.2 and 4.3 we visit the origins of this
premise and examine its validity in different scenarios. To avoid
digression, here we discuss these concepts only in brief. We
emphasize that a comprehension of the probabilistic relevance of
the nucleation rate is essential for understanding the central idea
of this paper. A more detailed discussion on the development of
the stochastic analysis of nucleation is provided in the Supporting
Information.
4.2. Probabilistic Relevance of Nucleation Rate.

Theoretical descriptions of nucleation hypothesize that a system
must cross a free energy barrier for nucleation to occur.40

Successful nucleation occurs when a cluster of a critical size, the
critical cluster, forms in the solution and grows further. The
stochastic approach to modeling nucleation through the Master
equation considers nucleation as a Markov process43,44 in which
density fluctuations of various magnitudes occur in a solution
spontaneously. The phrase “probability of nucleation” essentially
refers to a probability p that a critical density fluctuation occurs
spontaneously in the system, because that is the true “chance
event” in this context.45 Hence, in the probabilistic viewpoint, the
formation of a nucleus is treated as a rare success among many
random attempts made by the system to cross the energy barrier.
In this context, the rare “success” is the occurrence of a density
fluctuation of the critical size, and the random “attempts” are the
density fluctuations of various sizes that occur spontaneously.
Within the scope of the Markov approximation, these attempts
are considered to occur one af ter another in time. This viewpoint
then allows one to define a relation between time and the
probability of nucleation.
The Markov description of nucleation concerns the

probability of a transition in the system from a state of having
n nuclei to that of having (n + 1) nuclei (hereafter simply referred
to as an n → (n + 1) transition). The attempts toward this
transition are hypothesized to occur at an attempt f requency ν, with
a probability of success p for each attempt. Statistical mechanics
considerations suggest p to be given by the Boltzmann
distribution law as40,46,47

= −Δ *p G k Texp( / )B (7)

in which ΔG* is the change in the Gibbs free energy associated
with the formation of the critical cluster (i.e., the energy barrier to
nucleation). The hypothetical attempt frequency ν, however, is
meant to be obtained from experimental data.48 From eq 7, one
notes that the success probability p for an n→ (n + 1) transition
to occur in a single attempt depends only on the prevailing energy
barrier, and not on time. On the other hand, the transition
probability that the systemwill have an n→ (n + 1) transition in a
unit of time is obtained by def ining a rate of change of transition
probability κ. In other words, one formulates a time-continuous
description of nucleation mediated through discrete density
fluctuations through the definition of κ.
The premise that the rate of transition probability κ is given by

the rate of nucleation JV originates from the Markov analysis of

nucleation at a constant supersaturation (induction time experi-
ment). When the supersaturation does not vary with time, p is
independent of time and is not expected to change in between
the successive attempts (density fluctuations). The hypothetical
attempt frequency ν implies that time in the system should
evolve in blocks of (1/ν) units through the occurrence of
successive density fluctuations. This construct, coupled with the
fact that p remains constant during the time interval (1/ν), allows
one to define a κ that bridges the time gap between two
successive density fluctuations as κ = p/(1/ν) = νp. Subsequent
mathematical manipulation to relate the probability to time
involves solution of the Master equation similar to eq 6 for the
case of constant supersaturation (time-independent κ). The
resulting solution provides a CDF for the probability of
nucleation as a function of time as20

= − = −κ ν− −F t( ) 1 e 1 et p t( )
(8)

Equation 8 represents the CDF of a stationary Poisson process
with a Poisson rate parameter of κ. Hence the Markovian model
is also referred to as the Poisson model of nucleation.
The quantity κ = νp, by definition, implies that the probability

of an n → (n + 1) transition reaches unity in (1/νp) time units.
This definition may be interpreted as νp to be the rate at which
the system on the whole produces individual nuclei one after
another. In this sense κ = νp holds themeaning as the steady-state
rate of nucleation for a system producing successive density
fluctuations at a constant supersaturation. Equation 8 thus
provides the stochastic def inition of the nucleation rate κ.
The Poisson description of nucleation, which considers the

spontaneous occurrence of density fluctuations that bring several
molecules together at once randomly, is very different from a
mechanistic description of CNT, which describes nucleation to
occur through the attachment/detachment of monomers with
prescribed rates to a growing population of clusters. Historically,
the link between the probabilistic (Poisson) and the
deterministic (CNT) viewpoints of nucleation is achieved
through the manipulation of the variables ν, p, and the system
volume V together to conveniently def ine a new variable J that
can be interpreted as the nucleation rate provided by the
mechanistic (CNT) arguments.48 Since νp holds the meaning of
a stochastic nucleation rate in the entire volume of the system V,
one writes a nucleation rate per unit volume J as J = (ν/V)p = J0
exp(−ΔG*/kBT) in a form that is similar to the “deterministic”
nucleation rate given by the CNT. The pre-exponential factor J0
from the CNT rate expression now has a physical relevance to the
probabilistic viewpoint as the number of density fluctuations (of
any size) the system can produce per unit volume per unit time.
From the above discussion, one notes that the central premise

of the stochastic analysis, that the probability of nucleation in the
time interval dt is given by κ dt (with κ = JV), originates from the
Markov analysis of the system nucleating at a constant
supersaturation. Note that the nucleation rate J from the CNT
is related to the probability of nucleation only ex post facto,48

through the equality νp = JV. Equation 8 thus redef ines the
nucleation rate from the CNT as an “average” rate that can be
used to predict the probability of nucleation. However, this
equation itself does not originate from the CNT.
Furthermore, within the scope of the stochastic model, the

probability of nucleation is primarily a function of time only
through the hypothetical attempt frequency ν and not through
the rate of nucleation J. The nucleation rate J is simply a
redefinition of the product νp per unit volume to assimilate the
mechanistic (CNT) viewpoint of nucleation into the proba-
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bilistic viewpoint. This distinction is often not emphasized in the
published literature, leading to an inadvertent and incorrect
interpretation that the probability of nucleation is a function of
time because of the existence of a nucleation rate in the CNT
sense. The reader may wish to consult the Supporting
Information for further elaboration of the thought process
behind eq 8.
4.3. Assumptions Used in the Markov Analysis of

Nucleation. The following assumptions are employed in
deriving eqs 5 and 6, and also eq 8:43

(i) The One-Step Assumption. The Markovian description of
nucleation assumes that only transitions (jumps) between
successive number of nuclei are probable; i.e., the system can
only transition from having n nuclei to having n + 1 nuclei in an
infinitesimal time interval dt. The probability of a jump that skips
states (such as n nuclei to n + 2 nuclei) within dt is considered to
be extremely small and is neglected.
(ii) The Stationarity Assumption. All n → (n + 1) transitions

occur at the same rate that is independent of n. Also, one assumes
that no n→ (n − 1) transitions occur; i.e., once a nucleus forms,
it stays in solution.
(iii) The Repeated Randomness Assumption (Stosszahlansatz).

The infinitesimal time interval dt is long enough for the system to
equilibrate to the process conditions at t, and the equilibrium
distribution of themicroscopic variables at t + dt depends only on
the state of the system at t. Hence the differential limit dt → 0
should not be interpreted literally to mean dt = 0.
(iv) The Linearity Assumption. The probability of an n→ (n +

1) transition changes linearly with time at a rate κ during dt. In
other words, this rate κ remains constant during dt, but may
change in adjacent dt intervals. This assumption implies that the
time “unit” on which the “rate” κ is defined is smaller than the
time interval dt, i.e., dt consists of multiple time units, with each
unit of time defined in such a manner that the discrete evolution
of the process can be approximated by a time-continuous
description.
Despite its rigorous appearance, the Markov analysis that

underpins the derivation of eqs 5 and 6 and 8 is only an
approximation of the nucleation process that relies on the validity
of the above well-defined assumptions. At constant super-
saturation, successive density fluctuations in the system occur at
the same supersaturation. For this case a rate of transition
probability κ over a coarse-grain time unit that spans multiple
density fluctuations can be defined with a physical meaning
without violating these assumptions. However, when one extends
the same logic to analyze nucleation under time-varying super-
saturation, contradictions arise!
4.4. Markov Analysis of an MZW Experiment −

Inconsistencies. Let us look at the validity of the above
assumptions for the Markov analysis of nucleation under time-
varying supersaturation (i.e., for the case of a metastable zone
experiment). By def inition, in an MZW experiment the
supersaturation of the system continuously increases as specified
by S(t). The one-step assumption of a Markov jump process
mandates a nucleation mechanism that proceeds through
discrete density fluctuations that occur one after another. From
the repeated randomness assumption, the system must be
equilibrated to S(t) at any time t. These two Markovian
assumptions, together with the experimental requirement of a
continuous S(t), logically dictate that the systemmust experience
each density fluctuation at a different supersaturation. Note that
the CNT viewpoint of J as a measure of steady-state flux of nuclei
has no relevance here. For a stochastic description of nucleation

process, one needs to consider the probabilistic (attempt-
success) perspective of nucleation, not the mechanistic (steady-
state cluster population) viewpoint. Time in the experiment
evolves through the occurrence of nonsimultaneous density
fluctuations.
The assumption on the linearity of the rate of transition

stipulates that during the infinitesimal time interval dt that
follows a certain time t, the rate of change of transition
probability κ(t) must remain constant. When one assumes that
κ(t) is given by the nucleation rate in the system at t, i.e., κ(t) =
J(t)V(t), one implicitly has also assumed that the system
experiences successive density fluctuations at a frequency of ν (=
J0V). In other words, one has already assumed that time evolves
in steps of (1/ν) units. Thus, any two density fluctuations that
occur one after another must occur at two different super-
saturations S(t) and S(t + 1/ν). As a result, the linear rate
(constant-κ(t)) assumption is valid only for the duration
between two successive density fluctuations, (1/ν), and any dt
considered should be less than (1/ν) units of time.
For a transition (success) to occur under the assumed physical

process, a density fluctuation (attempt) must occur. By
definition, no attempts occur in between two successive density
fluctuations, and hence no physical mechanism exists to generate a
transition during a dt < 1/ν. Hence, the rate of change of
transition probability must be zero for this duration. In other
words, when the supersaturation is continuously varied, κ(t)
must be zero during any physically meaningful dt. As a result,
when one considers the supersaturation to vary continuously
with time, Pn(t) (see Section 4.1) cannot evolve on a fine-grain
time scale in between two successive density fluctuations, i.e.,
during any dt onemay consider. This conclusionmakes aMarkov
description of the process impossible and renders eqs 5 and 6
invalid.
Thus, one notes that aMarkovian analysis of a metastable zone

experiment cannot be formulated logically using the necessary
assumptions. Regardless of the subtle contradictions, if one
proceeds anyway with the Master equation approach (eqs 5 and
6) by considering κ(t) = J(t)V(t), such an analysis is not in line
with the assumed physical description of the process. To ensure a
continuous-time description of a discrete process that evolves in
time in steps of (1/ν) time units, the mathematical formulation
that considers κ(t) = J(t)V(t) incorrectly decreases Pn(t) and
increases Pn+1(t) during a time step. This is so because, in such a
formulation, despite the physical impossibility, a transition is
considered probable in the time interval between two density
fluctuations. The time interval dt is treated conceptually by eqs 5
and 6 as if multiple density fluctuations occur at S(t), whereas
only one density fluctuation should be counted in the analysis.
The integration of J(t)V(t) over the path of the experiment, as
implemented in solving eqs 5 and 6, thus incorrectly represents
the physical process. Such integration artificially inflates the
probability of nucleation on a continuous time axis and predicts
nucleation to occur with an appreciable probability at a much
lower supersaturation than otherwise. This inflation of
probability is clearly seen in Figure 4a−d, in which the model-
predicted range of Sn (vertical spread of data) is always narrower
than the experimentally obtained range (horizontal spread).
In summary, the disagreement shown in Figure 4a−d

originates from an incorrect representation of the physical
process by the stochastic model brought forth by the use of
nucleation rate to represent the rate of transition probability of
the system. This approach presupposes the validity of the
assumptions on which the equality of κ = JV is founded for the

Crystal Growth & Design Article

DOI: 10.1021/acs.cgd.6b01529
Cryst. Growth Des. 2017, 17, 1132−1145

1139

http://pubs.acs.org/doi/suppl/10.1021/acs.cgd.6b01529/suppl_file/cg6b01529_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.cgd.6b01529/suppl_file/cg6b01529_si_001.pdf
http://dx.doi.org/10.1021/acs.cgd.6b01529


case of nucleation in the metastable zone. In light of the above
discussion, to capture the observed trends in the experimental
data, one realizes that one needs a better approximation of the
process than the (incorrect) Markov description that relies on
the use of a nucleation rate. Below we develop such a thought
process that leads us to interesting conclusions.
4.5. Nucleation in aMetastable Zone−NewApproach.

Density fluctuations are random in time in that a density
fluctuation can occur spontaneously at any time in a system. This
unpredictability of the occurrence of a fluctuation is the reason
why nucleation is stochastic in the first place. At constant
supersaturation, the randomness in the time of nucleation arises
in part from the uncertainty in the time at which the next density
fluctuation (attempt) will occur.49 For the same reason, when the
supersaturation of the system is varied continuously, the
supersaturation at which the “next” density fluctuation occurs is
also uncertain. In the constant-supersaturation case, the
uncertainty in nucleation time is tackled by introducing a
hypothetical attempt frequency ν. This construct allowed one to
def ine a nucleation rate J as (νp/V). Such a presumed attempt
frequency ν dictates time t to evolve in steps of (1/ν). For the
case of a time-varying supersaturation, however, this construct
mandates that the system should make successive attempts only
at “predetermined” supersaturations (i.e., at S(t), S(t + 1/ν), S(t
+ 2/ν), etc.). Thus, a “path dependency” of the process is
automatically introduced into the mathematical formulation
through the use of a nucleation rate, and the process can no
longer be considered stochastic.
Hence, to preserve the randomness involved in the occurrence

of the “next” density fluctuation, one would rather not make an
assumption regarding the attempt frequency. However, without
the concept of an attempt frequency, the question one faces is
how can one establish the continuity of time. Fortunately, the
specified supersaturation path S(t) is an independent variable
that is controlled by the experimenter, and a one-to-one
correspondence exists between time t and supersaturation S(t).
Thus, onemay contemplate representing the evolution of time in
the MZW experiment indirectly through S(t) and the evolution
of probability of nucleation through the functionality p(S).
4.5.1. Energy Barrier As the Primary Variable. The problem

of predicting f(t) in an MZW experiment greatly simplifies when
one considers the energy barrier to nucleation as the primary
variable. In a metastable zone experiment that starts from a
saturation condition, the energy barrier (ΔG*/kBT) is gradually
lowered from being infinite to being an energy barrier at which
nucleation is observed. To facilitate the following discussion, first
let us define a new random variable g as

≡ Δ *g G k T( / )B (9)

The energy barrier is a monotonic function of supersaturation.
Hence a one-to-one correspondence exists between the energy
barrier g and time t through S(t). Any time interval (t, t + dt) may
be represented by a unique energy barrier interval (g, g + dg).
Considering the energy barrier interval instead of the time

interval has other advantages. First, the randomness of a density
fluctuation to occur at any time between the two energy barriers g
and (g + dg) is preserved. Second, if the rate of change of energy
barrier is large, the assumption that the system is equilibrated to
the prevailing energy barrier during dt may not hold. Instead,
when an infinitesimal energy barrier interval is considered, then
not only the corresponding time interval dt is infinitesimal, but
also one’s assumption that the system equilibrates to the
prevailing supersaturation is more reasonable. Thus, to capture

the true stochastic nature of the density fluctuations, we consider
density fluctuations to occur randomly in the energy barrier
(supersaturation) space and associate the successive density
fluctuations to the passage of time through g(t).

4.5.2. Probability Functions for MZW. When a system
experiences an energy barrier g, the probability that a
spontaneous critical density fluctuation occurs is given by p as
p(g) = exp(−g) (eq 7). When the energy barrier is continuously
varied, p may be interpreted as the probability of success for a
single density fluctuation that may randomly occur in the energy
barrier interval (g, g + dg). In that sense, we interpret eq 7 as a
function that expresses the probability density of nucleation at g
and write the PDF as

≡ = −f g p g g( ) ( ) exp( ) (10)

Equation 10 is an exponential distribution function with a
characteristic “rate parameter” of unity. Hence it is suitable to
represent a Poisson process of nucleation in which a density
fluctuation that occurs at a certain energy barrier g1 has no
influence over that at a subsequent energy barrier g2. Following
this line of thought, we express the CDF for at least one critical
nucleus to form while the energy barrier is lowered from g = ∞
(at S = 1) to a certain g (at S) as

∫= ≥ = − ′ ′ = −
∞

−F g g g g g( ) Pr( ) exp( ) d en

g
g

(11)

in which g′ is the dummy variable of integration. With the
progress of the experiment, as time increases, the energy barrier
decreases. The negative sign in front of the exponential in eq 11
reflects this fact and hence can be ignored. This inverse
relationship between g and t is also implied in the definition of
the cumulative probability as F(g) = Pr(gn ≥ g) instead of the
conventional F(t) = Pr(Tn ≤ t) where Tn is the time of
nucleation. Note that F(g) represents the cumulative probability
of nucleation in the system by a time t = g−1(g) where g−1

represents the inverse functionality corresponding to g(t). In the
following section, we examine the effectiveness of eq 11 in
capturing the experimental probability distributions shown in
Figure 2.

4.6. MZW as a Function of Supersaturation.Using eq 11,
we have related the probability of nucleation in a continuously
supersaturated system to the energy barrier through a simple
exponential function. To evaluate the utility of eq 11 in
predicting the probability of nucleation at any Sn, we now need
amethod to link g to S that facilitates a translation of F(g) into the
quantity Ps discussed in the context of Figure 2. The energy
barrier to nucleation at a given supersaturation can be estimated
through several approaches, such as CNT,40,50 density functional
theory (DFT),51,52 and rigorous computational methods.47,53

Below we use the CNT approach to evaluate the energy barrier
and compare the predictions from eq 11 with the experimental
data.
Within the scope of the classical nucleation theory, the

capillarity approximation for a spherical nucleus expresses the
energy barrier g through the reversible work of formation of a
spherical critical cluster, W*, as40

π≡ * = Γg W k T S( / ) (4 )/(27 ln )B
3 3 2

(12)

In the above equation, the dimensionless interfacial free energy Γ
between the cluster and the solution is defined as Γ = (γd2/kBT)
in which d is the solute molecular diameter and γ is the energy
involved in the creation of a unit area of the new crystal surface
within the solvent.
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Now let us consider Smax (for the definition of Smax see Section
3.2). For eq 11 to capture the observed limiting behavior of Ps→
1 as Sn → Smax (Figure 2), Smax should be a supersaturation at
which g vanishes. Mean-field theoretical arguments suggest that
the energy barrier to nucleation vanishes at the spinodal
concentration.50,54,55 That eq 12 does not vanish as the solute
concentration approaches the spinodal concentration is a known
shortcoming of the CNT formulation. To circumvent this
limitation in the context of eq 11, we ask the following question:
within the scope of CNT, at what cluster size should the energy
barrier to nucleation become so low that nucleation becomes
imminent (i.e., Ps → 1)? One may contemplate that when the
system reaches a high degree of supersaturation at which the
number of molecules in a critical nucleus (ζ*) becomes unity,
nucleation should become ef fectively barrier-free. Note that we
are not suggesting that the critical cluster size (ζ*) drops to a
single molecule at the spinodal concentration. We are merely
emphasizing the fact that for ζ* < 1, the CNT formulation loses
its physical significance. If the CNT were to somehow
successfully capture a vanishing energy barrier, a meaningful
location for it should be at a supersaturation at which ζ* = 1.
From this perspective, to capture the observed trends in the data
within the scope of eq 11, we hypothesize the following
correction for the energy barrier given by eq 12, which will force g
to approach zero as Sn → Smax.
CNT provides the relationship between the number of

molecules in a spherical critical cluster, ζ*, and the super-
saturation S, as40

ζ π* = Γ S(8 )/(27 ln )3 3 3
(13)

By equating ζ* to 1, we obtain Smax from eq 13 as exp(2πΓ/3),
and using this value in eq 12, g at ζ* = 1 as

π= = Γζ*=g W k T( / ) ( /3)1 1 B (14)

in which W1 represents the reversible work of formation of a
critical cluster that contains a single molecule. By subtracting
(W1/kBT) from the energy barrier given by eq 12, we define a
“corrected” energy barrier that vanishes as Sn → Smax. Using this
corrected energy barrier, we now express F(g) in terms of
supersaturation S, and obtain Ps, the cumulative probability of
nucleation in a metastable zone, as a function of S, as

π π= −
* −

= Γ − Γ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟P

W W
k T S

exp exp
3

4
27 lns

1

B

3 3

2
(15)

The distributions of Ps predicted by eq 15 for the solutes studied
are shown in Figure 5. The agreement between the model and
the experimental data is highly satisfactory. The values of Γ
obtained by curve-fitting for the compounds studied are given in
Table 3. Table 3 also gives the interfacial free energies in their
dimensional form (γ).
The values of γ reported in the literature for various solutes

vary widely depending on experimental techniques and
theoretical arguments employed in those studies. Nevertheless,
the interfacial free energies obtained from our data through eq 15
are comparable to those reported in the literature. For example,
Granberg et al. suggested the values of γ for paracetamol to range
from 1.8 to 4.7 mJ/m2 depending on the experimental technique
used.56 The value we obtained for paracetamol (7.1 mJ/m2) is in
the vicinity of this range. For HEWL, using induction time
measurements, Kulkarni et al. have obtained Γ values in the range
of 0.87−1.80 (corresponding to a γ range of 0.39−0.81 mJ/
m2).57 A Γ value of 0.854 we report is again close to this range. In

performing such comparisons on the interfacial free energy
parameters, however, one needs to be cautious. The values of γ
obtained fromMZW experiments that use cooling crystallization
should not be compared with the γ values from our experiments.
This is because such studies typically use the argument behind
eqs 5 and 6 to determine the rate parameters from the MZW
data. As we have shown earlier, this rate approach to MZW relies
on assumptions that have questionable validity and is likely to
result in erroneous determination of the nucleation kinetic
parameters. Also, the interfacial free energy is expected to be
correlated to the solubility of a compound through intermo-
lecular interactions.58,59 Thus, one expects different values of γ to
result from isothermal experiments conducted at different
solubilities.
From Figure 5 we show that the nucleation probability of a

compound at any supersaturation under slowly increasing
driving force (r → 0) can be predicted using the framework of
the CNT with a single parameter Γ, without a need to consider a
rate of nucleation. As seen from this figure, eq 15 not only
captures the aspect that Ps → 1 as Sn → Smax (by design), it also
predicts the intermediate values of Ps very well from Sn = 1 to Sn =
Smax. The intermediate values of Ps have no connection to the
used approximation of Smax to occur at ζ*= 1. Also, the interfacial
free energy parameters obtained from the data using eq 15 are
physically meaningful and are comparable to the literature values.
Thus, the agreement between eq 15 and the experimental
probability distributions over the entire range of Sn emphasizes
the validity of the model.

Figure 5. Cumulative probability distributions of nucleation around
⟨Sn⟩0 in the limit of r→ 0 for five solutes: succinic acid, L-histidine, adipic
acid, paracetamol, and hen egg-white lysozyme. The solid lines drawn
are the predictions from eq 15. TheΓ values that best fit the data for each
compound are given in Table 3. The dotted lines indicate the induction
supersaturations (see Section 4.8) at which Ps equals (1/e) for
respective solutes.

Table 3. Maximum Experimentally Observed Supersaturation
(Smax) at Which the Nucleation Probability Ps Approaches
Unity as r → 0a

compound Smax Γ γ ψ

succinic acid 2.04 0.323 4.161 1.41
L-histidine 2.90 0.494 4.976 1.83
adipic acid 4.20 0.640 6.474 2.34
paracetamol 5.02 0.749 7.104 2.83
hen egg-white lysozyme 6.62 0.854 0.383 3.42

aAlso given are the interfacial free energy parameters (Γ and γ) that
best describe the data using eq 15, and the induction supersaturation
(ψ), for each compound. The units of γ are (mJ/m2).
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4.7. Smax and the Corrected Energy Barrier. A few aspects
of eq 15 merit further discussion. The corrected energy barrier
(W* − W1)/kBT has been discussed in the literature in the
context of equilibrium cluster size distribution (CSD) function.40

This term naturally appears in the derivation of an expression for
a self-consistent equilibrium CSD that satisfies the law of mass
action.60,61 The observation that this corrected energy barrier
may be used to predict the probability distribution of the
metastable zone width (Sn) from energetic considerations alone
is an interesting result from the present work. Even though eq 15
agrees very well with experimental data for all the compounds
studied, we note that the model increasingly overpredicts Ps as Sn
→ Smax, alerting us to the fact that the corrected energy barrier
was forced to vanish at ζ* = 1, and Smax for each compound may
or may not represent a true spinodal concentration.
Within the context of the CNT, we have speculated that Smax

may correspond to a supersaturation at which the number of
molecules in a critical nucleus becomes unity. On a cursory read
this speculation may appear to the reader as a trivial conclusion
drawn by us that the spinodal should occur at a supersaturation at
which ζ* = 1. We emphasize that this is not our conclusion. The
existence and the nature of Smax are highly interesting. We
mention here that our work using DFT revealed Smax to be indeed
close to a mean-field spinodal for all the compounds studied. A
detailed discussion on the true nature of Smax is beyond the scope
of this work, and this aspect will be addressed in a future
publication.
4.8. Induction Supersaturation ψ as Mean Metastable

Zone Width ⟨Sn⟩0. For the probability density given by eq 10,
the mean energy barrier gmean at which nucleation occurs in the
limit of r → 0 may be obtained as

∫ ∫= = − =
∞ ∞

g gf g g g g g( ) d exp( ) d 1mean 0 0 (16)

Hence, the mean supersaturation ψ at which one expects the first
nucleus to form in an MZW experiment occurs at the condition
gmean = 1, i.e., at the supersaturation at which the energy barrier
ΔG* drops to 1 kBT. From eq 11, one notes that the cumulative
probability F(gmean) at this mean energy barrier reaches a value of
(1/e) = 0.368.
Typically, the characteristic time of nucleation for a system

evolving at a constant supersaturation is obtained through
induction time experiments in which one models the distribution
of tn using the CDF given by eq 8. The mean time τ, which
represents the mean wait time for the first crystal at the
supersaturation of experiment, is given by τ = (1/κ) = (1/JV)
with F(τ) = (1 − 1/e).20 This time τ represents the “induction
time” of nucleation at a given supersaturation. In the same spirit,
for the case of the metastable zone experiment, we define the
mean supersaturation ψ at which the energy barrier drops to 1
kBT as an induction supersaturation. At Sn = ψ the cumulative
probability of nucleation reaches (1/e). The values of the
induction supersaturation obtained for all of the compounds
studied are provided in Table 3 and are shown in Figure 5.
Originating from eq 11, conceptually ψ represents a path-

independent supersaturation at which one expects nucleation to
occur on average in a system that is slowly supersaturated. This ψ
is the same quantity as the path-independent “critical super-
saturation” reported by He et al.19 and is the same limiting
supersaturation ⟨Sn⟩0 from this work discussed in the context of
Figure 1. We interpret this induction supersaturation ψ as an
energetically determined lower limit to the metastable zone
observed when a system is slowly and continuously super-

saturated. Since the value of F(gmean) at ψ (i.e., Ps=ψ) by definition
is (1/e) (= 0.368), we note that for supersaturations below ψ, the
probability of nucleation in a metastable zone experiment is
small. This probability further decreases rapidly as one
approaches the solubility point, i.e., as S → 1 in eq 15.
Conceptually, at a given supersaturation (i.e., at a given p), the

induction time τ characterizes the mean number of density
fluctuations that need to occur before successful nucleation. By
interpreting the rate of transition probability νp from eq 8 as the
nucleation rate JV in the context of the CNT, one may obtain the
nucleation rate parameters A and B through induction time
experiments. The time of nucleation in a metastable zone
experiment, however, does not characterize the “number of
density fluctuations” that need to occur for successful nucleation.
Effectively, tn in this case characterizes only p(g), and not ν (i.e.,
not J0). Thus, no information can be obtained about the kinetic
prefactor J0 from the “time of nucleation” in an MZW
experiment. The same implication applies to cooling crystal-
lization experiments that focus on cooling rate as a determinant
of the probability of nucleation. As a consequence, attempts to
determine the kinetic factors of nucleation rate expression from a
metastable zone experiment are error prone and need to be
reevaluated.

4.9. Influence of Kinetics on the Metastable Zone
Width. Thus far, we have discussed the probability of nucleation
under the condition of continuously varying supersaturation in
the limit of slow rate of change of supersaturation (the “low-r”
regime). In this case, we have shown that nucleation occurs in a
narrow range of supersaturations with a characteristic
“induction” supersaturation ψ. Many studies reported in the
literature, however, show consistently that higher rates of
supersaturation lead to wider metastable zones. Indeed, our
experiments also are in line with these reports. The results shown
in Figure 1 indicate that as r is increased, the asymptotic nature of
Sn disappears, and large values of Sn could be reached at higher
rates of generation of supersaturation (e.g., at rn > 0.05 h−1 for
succinic acid and rn > 0.45 h−1 for HEWL).
At a first glance, the notion that in a metastable zone the

probability of nucleation is governed solely by the energetics of
nucleation appears to go against this observed kinetic nature of
the metastable zone width. To resolve this paradox, we need to
focus on the nature of the density fluctuations that occur in the
solution and on the concepts of equilibrium and steady-state.
This aspect is discussed in detail in the Supporting Information.
Here we limit the discussion by emphasizing that the “kinetic”
effects involved in our determination of the limit of metastable
zone manifest due to the process of equilibration of the system to
a change in the supersaturation.
The characteristic time scale with which a system relaxes to a

newly imposed change in the solution conditions is given by the
time lag of nucleation (tlag). The kinetic processes involved in the
evolution of the system toward a steady-state may not be the
same as the processes that govern nucleation at an already-
achieved steady-state (i.e., processes that control the steady-state
nucleation rate). We emphasize that the observed path
dependence of an experimentally determined metastable zone
width should not be attributed to a steady-state nucleation rate at
each point along the path. This path dependence arises due to tlag.
This concept will be addressed in a future publication in which
we shall show that the apparent shift in Sn as a function of r can be
predicted accounting for the relaxation time tlag, but without
needing to consider a rate of nucleation.
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4.10. Effect of Solution Volume on the Metastable
Zone Width. One of the key variables that is believed to
influence the MZW is the volume of the system.23−25 This
expectation stems from the description of the MZW using the
rate of nucleation J through eqs 3 and 4, which consider the
product J(t)V(t) as the rate of transition probability κ(t). Thus,
intuitively one would expect that the probability of nucleation
should scale with the volume of the solution. Note that the
Poisson description of nucleation that underlies the development
of eq 8 does not consider the size of the system explicitly. This
formulation considers only the number of attempts that occur
one af ter another with a hypothetical attempt frequency of ν.
One might expect the attempt frequency ν to scale with

solution volume V. And so, it is reasonable to expect F(t) to scale
with V, but only when the system evolves at a constant
supersaturation, i.e., in an induction time experiment. In a
metastable zone experiment, as opposed to an induction time
experiment, the probability of nucleation does not depend on ν.
The variable p, which determines the nucleation probability in
this scenario, itself cannot have volume dependence because p is
interpreted in the time average sense, and not in the ensemble
average sense (see Supporting Information). As a result, a
consistent Poisson model for nucleation under time-varying
supersaturation does not predict the probability of nucleation to
depend on the volume of the solution, provided that the
experiment is conducted in the limit of r→ 0.More discussion on
other possible volume effects on the observed MZW is provided
in the Supporting Information.

5. CONCLUSIONS
The stochastic nature of nucleation originates from the
randomness involved in the appearance of the “clusters” of
foreign phase in a medium through spontaneous density
fluctuations. Historically, the Markov (Poisson) description of
nucleation was conceived to extract useful “kinetic” information
on nucleation from experiments at constant supersaturation.
Thus, in essence, an experimental probability distribution F(t) at
a given supersaturation “defines” the stochastic (average)
nucleation rate at that supersaturation and not vice versa.48

This distinction between the probabilistic (Markov) and
mechanistic (CNT) views of nucleation was not emphasized in
later publications. The notion that nucleation rate (usually from
CNT) is the cause of the stochasticity of nucleation is widely
implied in modern literature, whereas it is only a hypothesis
needed to facilitate a time-continuous Poisson description of a
discrete process. The Poisson model, originally conceived to be
applicable to nucleation at constant supersaturation, has been
extended later to describe nucleation under time-varying
supersaturation. This extension, which considers a time-depend-
ent nucleation rate as the “driver” for the nucleation probability,
is not consistent with the physics of the underlying Poisson
process. The resulting theoretical approximation may lead to
incorrect predictions and conclusions, as seen from our
experimental data in Figure 4a−d.
The concept discussed in this work is simple: a differential

limit of dt→ 0 is only a mathematical convenience that facilitates
a time-continuous description of the nucleation process at a
constant supersaturation. This limit cannot be interpreted as dt =
0 since time has to evolve. When the supersaturation of a system
is continuously varied, the system cannot “wait” for any nonzero
time interval dt at any S. Representing the transition probability
during that dt as κ(t) dt is thus questionable and is not in line with
the underlying physical description of the process. Hence, strictly

speaking, the notion of a nucleation rate is not relevant for the
analysis of an MZW experiment. While this differential
approximation is widely used in the literature to various degrees
of success, our work for the first time presents experimental data
that highlights the limitation of this approach.
A prevalent notion that stems from the existing approach is

that, in an MZW experiment, in the limiting case r → 0, the
systemmust nucleate close to the solubility boundary.21 One can
even find in the literature methods of solubility determination
based on this notion! We note that the limit r → 0 cannot be
interpreted as r = 0, because S has to change for the progress of an
MZW experiment. Within the scope of the Poisson description
that gives meaning to the stochastic approach, when S is
continuously varied, the solubility boundary at most experiences
one density fluctuation. The probability for that fluctuation to be
a critical fluctuation is zero. Thus, we conclude that, in a
metastable zone experiment, as r → 0, the system does not
nucleate at the solubility boundary. Instead, in this limit, the
probability of nucleation at any supersaturation is dictated by eqs
10 and 11.
The reasons discussed above suggest that attempts to obtain

nucleation rate parameters from the MZW experiments can be
misleading. Any agreement observed between the “rate models”
(e.g., eq 1) and the experimental data in terms of the time (or the
temperature, in the case of cooling crystallization) of nucleation
may be fortuitous. One needs to assess the validity of these
models on the basis of the supersaturation of nucleation to
uncover any hidden disagreements. This need was demonstrated
in this work through Figures 3a−d and 4a−d. For the same
reasons, comparing experimental data on MZW in cooling
crystallization on the basis of the rate of cooling is not
recommended. Instead, it is more appropriate to translate the
experimental results and compare them on the basis of the rate of
generation of driving force.
When a system is slowly and continuously supersaturated, one

expects the system to nucleate at a mean “induction super-
saturation” that corresponds to an energy barrier of 1 kBT. On a
first glance, the concept of an induction supersaturation
introduced through eq 15 may appear as an obvious conclusion.
After all, one intuitively expects that during a gradual decrease of
energy barrier, when the energy barrier drops to the levels of
thermal energy, nucleation should occur effortlessly. Indeed,
such intuitiveness is the appealing aspect of eq 15, which is
missing from the existing approaches that focus on time of
nucleation through eq 1. Depending on the volume of the system
considered, eq 1 may not predict a short mean time of nucleation
even when the energy barrier drops to thermal energy levels.
The Poisson model of nucleation as a rare success obtained

through many attempts is rather rudimentary and is an
approximation. Current understanding of nucleation pathways
under gradually increasing supersaturation is limited. The
fundamental modes of phase separationnucleation and
spinodal decompositionare of intense focus in many
investigations over the past several decades42,54,55,62−65 Indeed,
“kinetic spinodals” that occur at energy barriers of a few kBTwere
proposed in the literature as “observable limits of metastabil-
ity”.64 Such fundamental aspects of nucleation pathways (e.g., a
two-step nucleation pathway) are beyond the scope of the
approximate Poisson models such as eq 4 or eq 11. However, eq
11 has an intuitive appeal in this regard that is not present in eq 4.
Further, a mean induction supersaturation of nucleation (ψ) at
ΔG* = 1 kBT is within the realm of the kinetic spinodals
discussed in these studies of phase separation.
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The stochastic models discussed in this work are not
concerned with exactly how a system produces the density
fluctuations “one after another”, a necessary condition for a
Poisson process. This detail of the “nucleation mechanism”
comes into focus only when one attempts to express the
probability of success p in terms of the energy barrier (through eq
12) or the rate of transition probability κ in terms of the
nucleation rate (through eq 2). Although we have used the CNT
(“one-step” nucleation) description for the energy barrier in this
work, the experimental data could be explained equally well by
considering a nucleus to be a “dense liquid droplet” (two-step
nucleation) and using DFT arguments to obtain the energy
barrier. This aspect will be discussed in a future publication.
The concept of an induction supersaturation as an energeti-

cally driven lower limit of metastability is of practical relevance.
This ψ can be interpreted as a “lower” limit of metastable zone
that can be estimated quickly for many systems through eq 15
with Ps = (1/e). The interfacial free energy (Γ) needed for this
calculation may be estimated from the knowledge of the
solubility of a compound.59 This lower limit provides a guideline
for a wide range of applications that involve growing crystals
under conditions of low supersaturation.
In this work, we mainly discussed the probability of nucleation

in an MZW experiment in the low-r regime. Our future work will
focus on the true nature of Smax and on the prediction of this
probability in the high-r regime accounting for the lag-time
effects. We hope that the general observations presented in this
work for a variety of compounds open doors to a different way of
thinking regarding the origins of the metastable zone and the
mechanisms of solid−liquid phase separation.
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Berland, Y.; Dagorn, J.-C.; Verdier, J.-M. Nucleation of Calcium Oxalate
Crystals by Albumin: Involvement in the Prevention of Stone formation.
Kidney Int. 1999, 55, 1776−1786.
(7) Schwartz, A. M.; Myerson, A. S. Solutions and Solution Properties.
In Handbook of Industrial Crystallization, 2nd ed.; Myerson, A. S., Ed.;
Butterworth-Heinemann: Woburn, 2002.
(8) Fujiwara, M.; Chow, P. S.; Ma, D. L.; Braatz, R. D. Paracetamol
Crystallization Using Laser Backscattering and ATR-FTIR Spectrosco-
py: Metastability, Agglomeration, and Control. Cryst. Growth Des. 2002,
2, 363−370.
(9) More correctly, supersaturation is defined as the ratio of activity of
the solute at a given condition to the activity of the solute at equilibrium.
For dilute solutions, the activity coefficients, and/or their ratio, often
approach unity, and supersaturation is typically expressed as C/Ceq with
sufficient accuracy.
(10) Bonnin-Paris, J.; Bostyn, S.; Havet, J.-L.; Fauduet, H.
Determination of the Metastable Zone Width of Glycine Aqueous
Solutions for Batch Crystallizations. Chem. Eng. Commun. 2011, 198,
1004−1017.
(11) Sahin, O.; Dolas, H.; Demir, H. Determination of Nucleation
Kinetics of Potassium Tetraborate Tetrahydrate. Cryst. Res. Technol.
2007, 42, 766−772.
(12) Kashchiev, D.; Borissova, A.; Hammond, R. B.; Roberts, K. J.
Effect of Cooling Rate on the Critical Undercooling for Crystallization. J.
Cryst. Growth 2010, 312, 698−704.
(13) Sangwal, K. A Novel Self-Consistent Nyv́lt-like Equation for
Metastable Zone Width Determined by the Polythermal Method. Cryst.
Res. Technol. 2009, 44, 231−247.
(14) Sangwal, K. Novel Approach to Analyze Metastable Zone Width
Determined by the Polythermal Method: Physical Interpretation of
Various Parameters. Cryst. Growth Des. 2009, 9, 942−950.
(15) Kim, K.-J.; Mersmann, A. Estimation ofMetastable ZoneWidth in
Different Nucleation Processes. Chem. Eng. Sci. 2001, 56, 2315−2324.
(16) Mersmann, A.; Bartosch, K. How to Predict the Metastable Zone
Width. J. Cryst. Growth 1998, 183, 240−250.
(17)Nyv́lt, J. Kinetics of Nucleation in Solutions. J. Cryst. Growth 1968,
3−4, 377−383.

Crystal Growth & Design Article

DOI: 10.1021/acs.cgd.6b01529
Cryst. Growth Des. 2017, 17, 1132−1145

1144

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.cgd.6b01529
http://pubs.acs.org/doi/suppl/10.1021/acs.cgd.6b01529/suppl_file/cg6b01529_si_001.pdf
mailto:vbhamidi@eastman.com
http://orcid.org/0000-0003-1875-0574
http://orcid.org/0000-0001-7348-0381
http://dx.doi.org/10.1021/acs.cgd.6b01529


(18) Sear, R. P. Quantitative Studies of Crystal Nucleation at Constant
Supersaturation: Experimental Data and Models. CrystEngComm 2014,
16, 6506−6522.
(19) He, G.; Bhamidi, V.; Tan, R. B. H.; Kenis, P. J. A.; Zukoski, C. F.
Determination of Critical Supersaturation from Microdroplet Evapo-
ration Experiments. Cryst. Growth Des. 2006, 6, 1175−1180.
(20) Goh, L.; Chen, K.; Bhamidi, V.; He, G.; Kee, N. C. S.; Kenis, P. J.
A.; Zukoski, C. F.; Braatz, R. D. A Stochastic Model for Nucleation
Kinetics Determination in Droplet-Based Microfluidic Systems. Cryst.
Growth Des. 2010, 10, 2515−2521.
(21) Peters, B. Supersaturation Rates and Schedules: Nucleation
Kinetics from Isothermal Metastable Zone Widths. J. Cryst. Growth
2011, 317, 79−83.
(22) Kashchiev, D.; Firoozabadi, A. Kinetics of the Initial Stage of
Isothermal Gas Phase Formation. J. Chem. Phys. 1993, 98, 4690−4699.
(23) Kadam, S. S.; Kramer, H. J. M.; ter Horst, J. H. Combination of a
Single Primary Nucleation Event and Secondary Nucleation in
Crystallization Processes. Cryst. Growth Des. 2011, 11, 1271−1277.
(24) Kadam, S. S.; Kulkarni, S. A.; Ribera, R. C.; Stankiewicz, A. I.; ter
Horst, J. H.; Kramer, H. J. M. A New View on the Metastable Zone
Width During Cooling Crystallization. Chem. Eng. Sci. 2012, 72, 10−19.
(25) Maggioni, G. M.; Mazzotti, M. Modelling the Stochastic
Behaviour of Primary Nucleation. Faraday Discuss. 2015, 179, 359−382.
(26) Sangwal, K. Recent Developments in Understanding of the
Metastable Zone Width of Different Solute-Solvent Systems. J. Cryst.
Growth 2011, 318, 103−109.
(27) Talreja, S.; Perry, S. L.; Guha, S.; Bhamidi, V.; Zukoski, C. F.;
Kenis, P. J. A. Determination of the Phase Diagram for Soluble and
Membrane Proteins. J. Phys. Chem. B 2010, 114, 4432−4441.
(28) He, G.; Bhamidi, V.; Wilson, S. R.; Tan, R. B. H.; Kenis, P. J. A.;
Zukoski, C. F. Direct Growth of γ-Glycine from Neutral Aqueous
Solutions by Slow, Evaporation-Driven Crystallization. Cryst. Growth
Des. 2006, 6, 1746−1749.
(29) Davies, M.; Griffiths, D. M. L. The Solubilities of Dicarboxylic
Acids in Benzene and Aqueous Solutions. Trans. Faraday Soc. 1953, 49,
1405−1410.
(30) Kustov, A. V.; Korolev, V. P. The Thermodynamic Characteristics
of Solution of L-α-Histidine and L-α-Phenylalanine inWater at 273−373
K. Phys. Chem. of Solns. 2008, 82, 1828−1832.
(31) Granberg, R. A.; Rasmuson, Å. C. Solubility of Paracetamol in
Pure Solvents. J. Chem. Eng. Data 1999, 44, 1391−1395.
(32) Forsythe, E. L.; Pusey, M. L. The Effects of Acetate Buffer
Concentration on Lysozyme Solubility. J. Cryst. Growth 1996, 168, 112−
117.
(33) Finnie, S. D.; Ristic, R. I.; Sherwood, J. N.; Zikic, A. M.
Morphological and Growth Rate Distributions of Small Self-nucleated
Paracetamol Crystals Grown from Pure Aqueous Solutions. J. Cryst.
Growth 1999, 207, 308−318.
(34)Mullin, J. W.; Whiting, J. L. Succinic Acid Crystal Growth Rates in
Aqueous Solution. Ind. Eng. Chem. Fundam. 1980, 19, 117−121.
(35) Forsythe, E. L.; Pusey, M. L. The Effects of Temperature and
NaCl Concentration on Tetragonal Lysozyme Face Growth Rates. J.
Cryst. Growth 1994, 139, 89−94.
(36) The definition of the “average supersaturation” ⟨Sn⟩ is clarified in
Section 4.8.
(37) Kashchiev, D.; van Rosmalen, G. M. Review: Nucleation in
Solutions Revisited. Cryst. Res. Technol. 2003, 38, 555−574.
(38) Kashchiev, D.; Verdoes, D.; van Rosmalen, G. M. Induction Time
and Metastability Limit in New Phase Formation. J. Cryst. Growth 1991,
110, 373−380.
(39) Typically, when employing these models, one assumes that lag
time effects in nucleation are unimportant, and considers the system to
be “equilibrated” to the prevailing supersaturation at any time.
(40) Kashchiev, D. Nucleation: Basic Theory with Applications, 1st ed.;
Butterworth-Heinemann: Boston, USA, 2000; p 529.
(41) Chen, K.; Goh, L.; He, G.; Kenis, P. J. A.; Zukoski, C. F.; Braatz, R.
D. Identification of Nucleation Rates in Droplet-based Microfluidic
Systems. Chem. Eng. Sci. 2012, 77, 235−241.

(42) Vekilov, P. G. Two-stepMechanism for theNucleation of Crystals
from Solution. J. Cryst. Growth 2005, 275, 65−76.
(43) Van Kampen, N. G. Stochastic Processes in Physics and Chemistry,
3rd ed.; Elsevier: Amsterdam, The Netherlands, 2007; p 464.
(44) Gardiner, C. W. Handbook of Stochastic Methods, 2nd ed.;
Springer-Verlag: Berlin, Germany, 1985.
(45) Strictly speaking, the phrase “the probability of nucleation” is
somewhat ambiguous, because a cluster size that differentiates a nucleus
from a fully grown “crystal” is not very well defined. While we recognize
that a critical cluster need not necessarily grow into a crystal, in line with
the conventional interpretation, here we consider the term “nucleus” to
mean the “critical cluster”. This is the same meaning behind the
exponential term in eq 2.
(46) Ford, I. J. Statistical Mechanics of Nucleation: A Review. Proc.
Instn Mech. Eng. 2004, 218 (PartC), 883−899.
(47) ten Wolde, P. R.; Frenkel, D. Enhancement of Protein Crystal
Nucleation by Critical Density Fluctuations. Science 1997, 277, 1975−
1977.
(48) Toschev, S.; Milchev, A.; Stoyanov, S. On Some Probabilistic
Aspects of the Nucleation Process. J. Cryst. Growth 1972, 13-14, 123−
127.
(49) The other part of the uncertainty is whether an attempt by the
system will be successful in crossing the prevailing energy barrier. Note
that a measure of this uncertainty is given by p and not by the nucleation
rate J.
(50) Debenedetti, P. G.Metastable Liquids: Concepts and Principles, 1st
ed.; Princeton University Press: Princeton, USA, 1996.
(51) Oxtoby, D. W. Nucleation of First-Order Phase Transitions. Acc.
Chem. Res. 1998, 31, 91−97.
(52) Oxtoby, D. W.; Evans, R. Nonclassical Nucleation Theory for the
Gas-Liquid Transition. J. Chem. Phys. 1988, 89, 7521−7530.
(53) Auer, S.; Frenkel, D. Prediction of Absolute Crystal Nucleation
Rate in Hard-Sphere Colloids. Nature 2001, 409, 1020−1023.
(54) Binder, K. Nucleation Barriers, Spinodals, and the Ginzburg
Criterion. Phys. Rev. A: At., Mol., Opt. Phys. 1984, 29, 341−349.
(55) Cahn, J. W.; Hilliard, J. E. Free Energy of a Nonuniform System.
III. Nucleation in a Two-Component Incompressible Fluid. J. Chem.
Phys. 1959, 31, 688−699.
(56) Granberg, R. A.; Ducreux, C.; Gracin, S.; Rasmuson, Å. C. Primary
Nucleation of Paracetamol in Acetone−Water Mixtures. Chem. Eng. Sci.
2001, 56, 2305−2313.
(57) Kulkarni, A. M.; Zukoski, C. F. Nanoparticle Crystal Nucleation:
Influence of Solution Conditions. Langmuir 2002, 18, 3090−3099.
(58) Sear, R. P. Classical Nucleation Theory for the Nucleation of the
Solid Phase of Spherical Particles with a Short-ranged Attraction. J.
Chem. Phys. 1999, 111, 2001−2007.
(59) Christoffersen, J.; Rostrup, E.; Christoffersen, M. R. Relation
Between Interfacial Surface Tension of Electrolyte Crystals in Aqueous
Suspension and Their Solubility; A Simple Derivation Based on Surface
Nucleation. J. Cryst. Growth 1991, 113, 599−605.
(60) Kashchiev, D. Thermodynamically Consistent Description of the
Work to Form a Nucleus of any Size. J. Chem. Phys. 2003, 118, 1837−
1851.
(61) Wilemski, G. The Kelvin Equation and Self-Consistent
Nucleation Theory. J. Chem. Phys. 1995, 103, 1119−1126.
(62) Shah, M.; Galkin, O.; Vekilov, P. G. Smooth Transition from
Metastability to Instability in Phase Separating Protein Solutions. J.
Chem. Phys. 2004, 121, 7505−7512.
(63) Balsara, N. P.; Rappl, T. J.; Lefebvre, A. A. Does Conventional
Nucleation Occur during Phase Separation in Polymer Blends? J. Polym.
Sci., Part B: Polym. Phys. 2004, 42, 1793−1809.
(64) Wang, Z.-G. Concentration Fluctuation in Binary Polymer
Blends: χ Parameter, Spinodal and Ginzburg Criterion. J. Chem. Phys.
2002, 117, 481−500.
(65) Cahn, J. W.; Hilliard, J. E. Free Energy of a Nonuniform System. I.
Interfacial Free Energy. J. Chem. Phys. 1958, 28, 258−267.

Crystal Growth & Design Article

DOI: 10.1021/acs.cgd.6b01529
Cryst. Growth Des. 2017, 17, 1132−1145

1145

http://dx.doi.org/10.1021/acs.cgd.6b01529

