Journal of Materials Chemistry A

View Article Online

View Journal | View Issue

PAPER

Cite this: J. Mater. Chem. A, 2018, 6, 10313

Received 8th February 2018 Accepted 25th April 2018

DOI: 10.1039/c8ta01367e

rsc.li/materials-a

1. Introduction

Electrochemical reduction of CO₂ to fuels and chemical feedstock provides an attractive option to relieve the climate crisis and balance the carbon cycle to some extent. Developing efficient and stable catalysts for CO₂ reduction plays a decisive role in the conversion of chemically inert CO₂ to value-added chemicals. Metals,¹ metal complexes,^{2–4} and alloys⁵ have been exploited as electrocatalysts for CO₂ reduction in the past three decades. Cu based catalysts have attracted extensive attention because of their unparalleled ability of reducing CO₂ to multicarbon products,^{6,7} especially ethanol and ethylene.^{8,9} Noble metals such as Au,¹⁰ Ag^{11,12} and Pd,¹³ showed high selectivity for CO production. Among the non-precious metals, the low cost Sn-based catalysts exhibit high selectivity for formate,^{14,15}

‡ The authors contributed equally to this work.

High efficiency electrochemical reduction of CO₂ beyond the two-electron transfer pathway on grain boundary rich ultra-small SnO₂ nanoparticles[†]

Chenglu Liang, (); ^{ab} Byoungsu Kim, (); ^{cd} Shize Yang, (); ^e Yang Liu, (); ^{ab} Cristiano Francisco Woellner, (); ^b Zhengyuan Li, (); ^b Robert Vajtai, ^b Wei Yang, (); ^{*a} Jingjie Wu, (); ^f Paul J. A. Kenis^{*cd} and Pulickel M. Ajayan^{*b}

Well crystallized and interconnected SnO₂ nanoparticles (<5 nm) were synthesized *via* oxidation of exfoliated SnS₂ sheets. The SnO₂ nanoparticles exhibit a high total faradaic efficiency (FE) of 97% towards electrochemical reduction of CO₂ at -0.95 V vs. the reversible hydrogen electrode (RHE). The main product ratio of CO/HCOO⁻ which intrinsically correlates to the surface SnO_x/Sn ratio variation varies with the applied potential. Beyond CO and HCOO⁻ products formed *via* the two-electron transfer pathway, hydrocarbons and oxygenates are produced. The formation of hydrocarbon (CH₄) *versus* oxygenate (C₂H₅OH) depends on the choice of electrolyte (KOH vs. KHCO₃), both of which can reach a maximal faradaic efficiency of 10%. The distinctive grain boundary and exposed corner/step sites in the interconnected SnO₂ nanoparticles contribute to the high FE of CO₂ reduction and unique selectivity.

a promising feedstock for fine chemicals.¹⁶ Although the underlying mechanisms of Sn-based catalysts remain elusive concerning the reaction pathways and the nature of active sites, nanostructuring of tin and tin oxides has been experimentally demonstrated to be an effective way to improve the overall catalytic activities compared to their bulk counterparts. Xie et al.15 developed metallic tin quantum sheets confined in graphene, which showed an enhanced faradaic efficiency of formate up to 89% with a current density of 21.1 mA cm⁻² at -1.8 V versus SCE (saturated calomel electrode). Apart from using the Sn metal directly as catalysts, emerging evidence has proved that Sn oxide-derived Sn exhibited even better CO₂ reduction activity and tunable selectivity.17-19 Kanan et al.17 pointed out that SnO and SnO₂ formed rapidly on the surfaces of Sn when exposed to air.²⁰ The SnO_x layer persisted on electrode surfaces under the reduction conditions, which was essential for CO₂ reduction on the Sn-based catalyst as the etched electrode with fresh Sn⁰ resulting in exclusive H₂ evolution. Modification of the nanostructure of the tin oxide precursors18,21-24 has direct influences on the electrocatalytic performances of the reduced Sn catalysts. Further investigations on other oxide-derived metal catalysts including Au,25 Cu26 and Pb27 by Kanan's group confirmed that the microstructure of metal oxides (e.g. high grain boundary density) determines CO₂ reduction activity/selectivity.

Herein, we developed a new method to synthesize well crystallized SnO_2 nanoparticles from exfoliated single or few layer SnS_2 sheets obtained *via* a cryo-exfoliation method.²⁸ The as-obtained SnO_2 nanoparticles combine the features of ultrasmall size (<5 nm) and high crystallinity, which is difficult to

^aCollege of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065, Sichuan, China

^bDepartment of Materials Science and Nano Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, USA

^cDepartment of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA

^dInternational Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan

^eMaterials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA. E-mail: jingjie.wu@uc.edu

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/c8ta01367e

achieve by traditional wet chemical methods including solgel,²⁹ hydrothermal processes,³⁰ microwave heating methods,³¹ and sonochemical synthesis.32 These prior methods produce SnO₂ nanoparticles with a low crystallinity, thus further annealing at higher temperatures was necessary to achieve satisfactory crystallinity, which in turn resulted in crystal growth to form bigger nanoparticles.^{29,31} In addition, our ultrasmall SnO₂ nanoparticles are interconnected to each other to form a distinguished grain boundary. The ultra-small SnO₂ nanoparticles showed a high faradaic efficiency (FE) of $\sim 97\%$ for CO_2 reduction at -0.95 eV vs. RHE. Most intriguingly, hydrocarbons and oxygenates were first formed beyond CO and HCOO⁻ on Sn-based catalysts, of which methane (CH₄) or ethanol (C₂H₅OH) is the main product with a yield up to a FE of 10% depending on the electrolyte. The reaction mechanism of our catalyst, ultrasmall SnO₂ nanoparticles, is different from that of the traditional Sn catalyst. Our work suggests that electrocatalytic activity and selectivity of Sn based catalysts toward CO₂ reduction can be tuned by nanostructuring.

2. Materials and methods

2.1 Synthesis of bulk SnS₂

2 mmol SnCl₄·5H₂O and 15 mmol thioacetamide (CH₃CSNH₂) were added to 80 mL distilled water. After vigorous stirring for 10 min to dissolve both SnCl₄·5H₂O and thioacetamide, the mixture was transferred into a 100 mL Teflon-lined autoclave, sealed and heated at 180 °C for 24 h to form bulk SnS₂. After cooling down to room temperature naturally, the hydrothermally treated mixture was centrifuged to get the sediment of the bulk SnS₂ product. The bulk SnS₂ was washed with distilled water and absolute ethanol many times until the supernate of the bulk SnS₂ suspension became colorless with a pH value of about 7. The as-obtained bulk SnS₂ was dried at 50 °C for 1 h under the flow of argon protection to remove sulfur residual in SnS₂. And the bulk SnO₂ was obtained by annealing bulk SnS₂ at 500 °C for 3 h under air conditions.

2.2 Exfoliation of SnS₂

The bulk SnS_2 was firstly cryogenically treated followed by sonication in H_2O for 4 h. After sonication, the as-obtained suspension was centrifuged at 10 000 rpm for 30 min to get the supernate which contained mainly single or few layer SnS_2 sheets.

2.3 SnO₂ nanoparticles derived from SnS₂ sheets

40 mL of the supernate of SnS_2 sheets (~0.2 mg mL⁻¹) was mixed with 5 mL of 30 wt% H_2O_2 aqueous solution under stirring. Then the mixture was transferred into a Teflon-lined stainless steel autoclave, sealed and heated at 200 °C for 24 h. After the hydrothermal process, the SnS_2 sheets were transformed into well crystallized SnO_2 nanoparticles.

2.4 Electrochemical measurements

The CO₂ reduction reaction was conducted in an electrochemical flow cell employing SnO₂ nanoparticle-based gas diffusion electrodes. The schematic of the flow cell for CO₂ reduction is presented in the ESI (Fig. S1).† The electrolysis was performed in a potentiostatic mode with a full cell voltage ranging from -1.65 to -3.5 V controlled using a potentiostat (Autolab PGSTAT-30, EcoChemie) under ambient pressure and temperature. While both the catholyte and anolyte were 1 M KOH, the pH value of 1 M KOH was calibrated to be 13.48 by using a pH meter (Thermo Orion, 9106BNWP). CO2 was supplied to the cathode side. A syringe pump (PHD 2000, Harvard Apparatus) supplied the electrolyte (1 M KOH) to minimize boundary layer depletion effects and supply fresh electrolytes thereby helping to maintain the pH on the electrode surface. Individual electrode potentials were recorded using multimeters (AMPROBE 15XP-B) connected to each electrode and a reference electrode (Ag/AgCl; RE-5B, BASi) placed in the electrolyte exit stream. The measured potentials after iR compensation were rescaled to the RHE using the equation E (versus RHE) = E (versus Ag/AgCl) + 0.209 V + 0.0591 V × pH. The current reported here was obtained by averaging the span of time (at least 180 s) for each applied voltage.

For each applied voltage, after the cell reached the steady state, 1 mL of the effluent gas stream was periodically sampled and diverted into a gas chromatograph (Thermo Finnegan Trace GC) equipped with both thermal conductivity and flame ionization detectors, and a Carboxen 1000 column (Supelco). Also, the exit catholyte was collected at each applied voltage followed by identifying and quantifying using ¹H NMR (nuclear magnetic resonance, UI500NB, Varian). In addition to gaseous products from the electrochemical CO₂ reduction reaction, H₂ was detected as the product of the competing hydrogen evolution reaction.

The working electrode was prepared by mixing 20 mL of the catalyst suspension with 50 μ L of Nafion solution (0.5 wt%) followed by sonication for 15 min. The catalyst ink was then spray coated onto a gas diffusion layer (GDL, Sigracet 35 BC) with an area of 0.5 mm × 2.0 mm, which was then dried for 24 h before the CO₂ reduction experiments. The counter electrodes, anodes, were prepared by hand-painting of IrO₂ catalyst ink onto the GDL to reach a loading of about 1.5 mg cm⁻².

3. Results and discussion

The synthetic process of SnO_2 nanoparticles is displayed in Scheme 1. SnS_2 nanosheets were prepared by liquid phase exfoliation of the bulk SnS_2 powder in H₂O. The thickness of SnS_2 nanosheets is in the range of 0.8–1.8 nm as shown in the AFM profile (Fig. S2, ESI[†]), indicating the existence of single or few layer SnS_2 sheets. The TEM images of SnS_2 sheets show the

 $\ensuremath{\text{Scheme 1}}$ Schematic illustration of the synthesis of uniform $\ensuremath{\text{SnO}_2}$ nanoparticles.

nanosheet morphology (Fig. S2, ESI⁺). The XRD (Fig. 1a) and Raman spectroscopy (Fig. 1b) results further confirm the successful exfoliation of bulk SnS2 into SnS2 nanosheets. The bulk SnS₂ shows typical diffraction peaks at 15.0 (001), 28.2 (100), 30.2 (002), 32.1 (101), 46.1 (003), 49.9 (110), 52.4 (111), 62.9 (004), 67.1 (202) and 70.3° (113) for 1T-SnS₂ (JCPDS no. 23-0677). After exfoliation, the XRD diffraction pattern only shows *c*-axis orientation peaks for (001) faces indicating the successful exfoliation of bulk SnS2 into SnS2 nanosheets. The Raman spectra of both bulk SnS₂ and SnS₂ nanosheets display a peak centered at 314 \mbox{cm}^{-1} attributed to the $A_{\rm 1g}$ vibration mode of SnS₂.³³ Then the exfoliated SnS₂ sheets were used as precursors to synthesize SnO₂ nanoparticles by hydrothermal heating at 200 °C for 24 h in the presence of excess H₂O₂ aqueous solution (oxidizing agent). The corresponding XRD pattern displays diffraction peaks of only SnO₂ (JCPDS no. 77-0450) at 26.5 (110), 33.9 (101), 37.9 (200), 51.9 (211), 54.9 (220), 57.9 (002), 61.8 (310), 64.6 (112), 66.2 (301), 71.4 (202) and 79.0 (321), which is consistent with the XRD results of the bulk SnO₂ obtained by annealing bulk SnS₂ at 500 °C for 3 h under air conditions, indicating the formation of SnO₂. The bulk SnO₂ shows a main Raman peak at about 635 cm^{-1} for the A_{1g} vibration mode of typical SnO₂ along with two minor peaks at about 475 cm⁻¹ and 775 cm^{-1} for the E_g and B_{2g} modes, respectively.³⁴ As a comparison, the A1g vibration mode of SnO2 nanoparticles red shifts to 618 $\rm cm^{-1}$ and the peaks are broadened, both indicating the nature of nanocrystalline materials.35 XPS spectra shown in Fig. 1c and d further confirm the transformation of SnS₂ nanosheets into SnO₂ nanoparticles. The Sn_{3d} spectra of SnS₂ nanosheets show mainly the Sn(v) feature of SnS_2 at $3d_{3/2}$ 495.3 eV and $3d_{5/2}$ 486.9 eV. There are two shoulder peaks at 494.0 eV and 485.6 eV corresponding to Sn(II) species,36,37 which is most probably due to the tendency of SnS₂ to lose sulfur atoms. After the SnS₂ nanosheets were oxidized to SnO₂, the

Sn_{3d} spectra show only the Sn(IV) feature of SnO₂ at 495.8 eV and 487.4 eV for $3d_{3/2}$ and $3d_{5/2}$ binding energies, respectively.³⁸ The O 1s spectrum of SnO₂ nanoparticles in Fig. 1d can be deconvoluted into peaks at 530.2 eV for the lattice oxygen (Sn–O–Sn) in SnO₂, at 531.2 eV for Sn–O, and at 532.4 eV for the absorbed surface oxygen.^{39,40} Besides, the S 2p XPS spectra shown in Fig. S3[†] can provide further evidence for the complete transformation from SnS₂ to SnO₂. The S 2p XPS spectrum of original SnS₂ nanosheets can be deconvoluted into two peaks at 162.9 eV and 161.7 eV, corresponding to the $2p_{1/2}$ and $2p_{3/2}$ binding energies of SnS₂.^{37,41} When oxidized to SnO₂ nanoparticles, the sulfide was transformed to sulfate which shows higher binding energies at 169.8 eV and 168.6 eV for the $2p_{1/2}$ and $2p_{3/2}$, respectively.^{42,43}

Interestingly, the morphology of layered SnS₂ nanosheets was transformed into uniform nanoparticles of SnO₂ after the hydrothermal reaction. TEM images of SnO₂ nanoparticles are presented in Fig. 2a-c with different magnifications. Low magnification view shows the aggregation of small nanoparticles. A single nanoparticle (diameter about 5 nm or smaller) with well-defined crystal facets can be distinguished at high magnifications. The SnO₂ nanoparticles (or grains) interconnect with each other to form a grain boundary (Fig. 2b, c and S3[†]). The measured interplanar spacing is 0.335 nm, 0.264 nm and 0.176 nm corresponding to the (110), (101) and (211) of SnO₂, respectively, which are consistent with the XRD results. Electron energy-loss spectroscopy (EELS) of the sample (Fig. 2d) displays two sharp peaks at 532 eV and 538 eV along with a broad peak at about 555 eV, which agrees with the identity of SnO₂.⁴⁴ AFM and more TEM pictures of SnO₂ nanoparticles are shown in Fig. S4,† displaying a typical morphology of nanoparticles. The SnO₂ particles converted from bulk SnS₂ showed a morphology of aggregated particles with the size ranging from

Fig. 1 (a) XRD patterns and (b) Raman spectra of exfoliated SnS_2 nanosheets, bulk SnS_2 , SnO_2 nanoparticles and bulk SnO_2 , (c) Sn 3d XPS spectra of SnS_2 nanosheets and SnO_2 nanoparticles, (d) O 1s XPS spectrum of SnO_2 nanoparticles.

Fig. 2 TEM image of SnO_2 nanoparticles with (a) a low magnification, (b) and (c) with a high magnification, and (d) electron energy-loss spectroscopy (EELS) of SnO_2 NPs.

200 nm to 500 nm as shown in the SEM image (Fig. S5†). The crystallite size of bulk SnO_2 particles was calculated to be around 28 nm using the Debye–Scherrer equation from the XRD results.

The electrocatalytic activity of SnO₂ nanoparticles towards CO2 reduction was evaluated in 1 M KOH electrolyte in a flow cell which incorporates a gas diffusion electrode coated with a SnO₂ nanoparticle catalyst. The applied cathodic potentials ranged from -0.20 to -1.10 V versus the reversible hydrogen electrode (RHE). The overall faradaic efficiency (FE) of CO₂ reduction increased as the potential was swept more negatively, from 10% at -0.26 V to a maximum of 97% at -0.95 V as shown in Fig. 3a. Interestingly, when the applied potential was more positive than -0.62 V, CO was the only reduction product, which is uncommon in Sn catalysts usually preferring HCOOselectivity. When the applied potential was negatively beyond -0.62 V, HCOO⁻ became the predominant product. The maximum FE of HCOO⁻ achieved a value of 74% at -0.73 V. One exclusive property for SnO₂ nanoparticles is that the total FE of CO₂ reduction reaches a maximum of 97% at -0.95 V. Another unique selectivity for SnO₂ nanoparticles is that trace amounts of hydrocarbons (CH₄ and $C_2H_4 < 1\%$ FE) emerged at -0.73 and -0.8 V, respectively. On further increasing the potentials to -0.95 V and -1.03 V, noticeable amounts of 7% CH4 and 14% CH4 were detected, respectively, along with trace amounts of C₂H₄, C₂H₅OH, CH₃COOH and n-C₃H₇OH, which was never reported for the Sn-catalyst for electrochemical CO₂ reduction.

For the SnS_2 nanosheet electrode (Fig. 3b), the H₂ evolution reaction dominates over CO₂ reduction. Among CO₂ reduction products, HCOO⁻ was the main product in the applied potential range of -0.26 to -0.80 V, but only reached a maximum FE of about 37% at -0.62 V. The dominant selectivity of HCOO⁻ over SnS_2 nanosheets is consistent with typical Sn based catalysts. For the bulk SnO_2 particle electrode, CO appeared as the primary product with a FE of about 32% at -0.45 V and then

Fig. 3 Faradaic efficiencies for CO_2 reduction at various applied potentials for (a) SnO_2 nanoparticles, (b) SnS_2 nanosheets and (c) bulk SnO_2 particles. (d) The CO_2 current densities for three electrodes evaluated in 1 M KOH electrolyte.

HCOO⁻ became the major product at more negative potentials, reaching a maximum FE of 42% at -0.74 V (Fig. 3c). Neither SnS₂ nanosheets nor bulk SnO₂ particles yielded hydrocarbon and oxygenate products. In addition, the maximum total FE of CO_2 reduction over either SnS_2 nanosheets (~40%) or bulk SnO_2 particles (\sim 55%) is much lower than that for SnO₂ nanoparticles (~97%). The unique selectivity to hydrocarbons/ oxygenates and high FE of SnO₂ nanoparticles different from the bulk counterparts is derived from their distinctive structure: the active grain boundary and exposed corner sites and edge sites in the reduced size (<5 nm). High density of grain boundaries in SnO2 nanoparticles is responsible for the active surfaces for enhanced CO₂ reduction^{45,46} and the adsorption/ desorption of key intermediates like 'CO2- and CO at the grain boundaries may be tailored towards the formation of more reduced products like hydrocarbons/oxygenates.47 Likewise, the stabilization of the CO_2^- intermediate in the ultrasmall SnO₂ nanoparticles over the bulk SnO₂ or the SnS₂ with a larger size^{15,18} facilitated CO₂ reduction over the competing HER and contributed to the high FE ($\sim 97\%$) of CO₂ reduction.

The current densities of CO₂ reduction for three electrodes are summarized in Fig. 3d. The current density of SnO₂ nanoparticle electrode increased drastically with the applied potentials beyond -0.62 V, and achieved beyond 100 mA cm⁻² after -0.8 V. In contrast, the current density of CO₂ reduction is only 34 mA cm⁻² at -0.8 V for SnO₂ bulk particles and 17 mA cm⁻² at -0.8 V for SnS₂ nanosheets. The enhanced current density of CO₂ reduction for SnO₂ nanoparticles is largely due to their higher intrinsic activity towards CO₂ reduction.

The linear sweep voltammetry (LSV) measurements were firstly carried out in Ar_2 -saturated 1 M KOH and the results are shown in Fig. S6.† As revealed by LSV, the SnO_2 nanoparticles exhibited the highest current density among the samples, which was roughly 2 and 3 times larger than those of SnS_2 sheets and SnO_2 bulk, respectively, indicating the high catalytic potential in SnO_2 nanoparticles. The comparison of LSV in Ar_2 and CO_2 saturated 0.1 M KHCO₃ shows the typical increasing of current density in the CO_2 saturated electrolyte, a potential indicator of CO_2 reduction activity on SnO_2 nanoparticles.

Also, the noticeable amounts of 5% CH₄ and 14% CH₄ detected at applied potentials of -0.95 V and -1.03 V respectively, should be emphasized (Fig. S7[†]). It is interesting to find that when the SnO₂ nanoparticle catalyst was tested in KHCO₃ electrolyte, the selectivity for C2H5OH is higher over CH4, reaching a FE of \sim 6% at -1.05 V apart from the main products of CO (FE of 35%) and HCOO⁻ (FE of 19%) as shown in Fig. S8.[†] While the applied potential was more negative (-1.21 V), a higher FE of HCOO⁻ ($\sim 40\%$) was achieved. After the electrolysis of the SnO₂ nanoparticle catalyst for 30 min, the FE of C_2H_5OH increased from 6% to 10% at -1.05 V and from 3% to 6% at -1.21 V, possibly due to the surface component change in the metastable SnO_x layer after electrolysis under reduction potentials for 30 min. The potential of getting minor CO_2 reduction products was reported in typical transition metal catalysts with known high selectivity towards CO or HCOO⁻ (ref. 48 and 49) by Jaramillo's group. They observed formate, methane, methanol, and ethanol as minor products for an Ag

Table 1	Comparison of CO ₂	reduction	performance for	or Sn-based	electrocatalysts
---------	-------------------------------	-----------	-----------------	-------------	------------------

		Detertial et	FE _{max} (%)			
Catalysts	Electrolytes	$FE_{max} (V vs. RHE)$	СО	HCOO ⁻	$-J_{CO_2}$ reduction (mA cm ⁻²)	Ref.
100 nm Sn particles	0.5 M KHCO_3	-0.9	Not reported	80	~ 12	55
Electrodeposited Sn particles (~500 nm)	0.1 M KHCO ₃	-1.19	Not reported	83.5	${\sim}7.6$	56
Electrodeposited Sn ($\sim 1 \mu m$ thick)	0.5 M NaHCO ₃	-1.05	10	71	${\sim}10$	14
<i>In situ</i> deposited Sn/SnO _x thin film	0.5 M NaHCO ₃	-0.7	~ 56	${\sim}40$	3-4	17
(a porous, particulate film)						
Tin quantum sheets (~5 nm)	0.1 M NaHCO ₃	-1.15	Not reported	>85	21.1	15
Nano-SnO ₂ (3–200 nm particles)	0.1 M NaHCO ₃	-1.15	Not reported	93.6	~ 9.8	18
Cu/SnO ₂ core/shell structure with 0.8 nm SnO ₂ shell	0.5 M KHCO ₃	-0.7	93	0	4.6	19
Cu/SnO ₂ core/shell structure with 1.8 nm SnO ₂ shell		-0.9	<1	85	Not reported	
Ultra-small SnO ₂ nanoparticles (<5 nm)	1 M KHCO ₃	-1.21	16	64	145	This work
_ 、 ,	1 M KOH	-0.95	44	46	147	

^{*a*} Note: all the applied potentials were converted to the RHE scale. $E(RHE) = E(Ag/AgCl) + 0.0591 V \times pH + 0.209 V$, $E(RHE) = E(SCE) + 0.0591 V \times pH + 0.242 V$ (01 M KHCO₃/NaHCO₃ pH = 6.8, 0.5 M KHCO₃/NaHCO₃ pH = 7.6, 1 M KHCO₃ pH = 9.2).

catalyst,50 which usually produce CO as the main product. In our work, it was found that the selectivity of the minor product was influenced by the electrolyte. When KOH was used as the electrolyte, the minor product was mainly CH₄. In KHCO₃ electrolyte, C₂H₅OH emerged as the primary minor product. The influence of electrolytes can be ascribed to their different modulations of the local pH value on the electrode surface, which in turn influences the availability of protons on the surface. The availability of protons and the H(ads) coverage on the electrode will have a strong influence on the protons involved in the CO₂ reduction reaction and HER. In our system, the delicate catalystelectrolyte interplay may influence not only the H(ads) coverage, but also the C-C coupling between C1 species at an early stage. In KOH electrolyte, the HER was suppressed due to the strong alkaline condition and the consumption of OH⁻ by reacting with $CO_2(g)$ to form HCO_3^- can lower the local pH value. However in KHCO3 electrolyte, the FE of the HER increased, which increased the local pH value by producing more OH⁻. Besides, the negatively charged key intermediates, such as the adsorbed 'CO²⁻ anion and the adsorbed $(CO)^{2-}$ anionic dimer are particularly sensitive to pH and solvent effects, which may alter the reaction probability between the C1 and C2 pathways.51

Apart from the minor products, CO or HCOO⁻ was still the main reduction product in our system. Comparison of FEs and current densities of CO or HCOO⁻ reported for Sn-based catalysts is shown in Table 1. The analysis of the results in Table 1 indicates that the selectivity of CO and HCOO⁻ could be tailored by modifying the surface chemistry and structure of the Sn catalyst. When the metal Sn (with a native SnO_x layer) was used directly as the catalyst, the main product is HCOO⁻. However, when tin oxide is utilized as the catalyst, the CO product can be predominant depending on the oxide thickness. An ultra-thin layer of extrinsic SnO_x favors the production of CO over HCOO⁻, which was demonstrated in the cases of an *in situ*deposited Sn/SnO_x thin film¹⁷ (thickness of Sn/SnO_x thin film was not mentioned in the work) and a Cu/SnO₂ core/shell structure with a 0.8 nm SnO2 shell,19 reaching a high CO FE of \sim 56 and 93, respectively. For our SnO₂ nanoparticles, CO was

the only reduction product of CO_2 at low overpotentials (-0.26 to -0.62 V vs. RHE). With the potentials swept more negatively beyond -0.62 V, the HCOO⁻ emerged as the main product. The switch of selectivity between CO and HCOO⁻ may be related to the chemical state of the Sn surface. At low overpotentials, the applied negative potentials may not be able to achieve a high degree of SnO_2 reduction. Thus an ultra-thin metastable SnO_r Sn layer was formed initially, which may lead to the high selectivity of CO. When the potentials were swept more negatively beyond -0.62 V, more SnO₂ was prone to be reduced to metal Sn, especially in the ultra-small SnO₂ nanoparticles, and the content of Sn in the metastable SnO_x/Sn increased. As a result, the high selectivity of HCOO⁻ showed up like for other typical Sn based catalysts. It is worth mentioning that even if the applied potentials were much more negative than the standard reduction potential of SnO₂ (\sim -0.35 V vs. RHE), a layer of metastable SnO_x still persists^{17,18,52–54} due to kinetic limitations.

4. Conclusion

Taking advantage of the ultra-thin exfoliated SnS₂ nanosheet framework, ultra-small, interconnected, and well crystallized SnO₂ nanoparticles (<5 nm) were synthesized via simple oxidation. When used as an electrocatalyst for reduction of CO2, SnO2 nanoparticles exhibited a high total faradaic efficiency of 97% at -0.95 V vs. the reversible hydrogen electrode (RHE) accompanied by a high current density of 147 mA cm^{-2} . In addition, except the typical CO2 reduction products of CO and HCOO⁻ for Sn-based catalysts, CH₄ and C₂H₅OH were detected in KOH and KHCO₃ electrolytes, with a faradaic efficiency up to 10%. The unique structure of interconnected SnO2 nanoparticles lead to a promising total FE of 97% at relatively low overpotentials and distinctive selectivity that was never reported for other Sn-based catalysts. The grain boundary between the crystallized SnO₂ nanoparticles may serve as active sites for the formation of hydrocarbons and oxygenates. The surface SnO_x/Sn ratio may play a key role in determining the formation of CO versus HCOO⁻, which in turn influences the route to form hydrocarbons and oxygenates.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This research is financially supported by SABIC. Chenglu Liang also would like to thank the financial support from the China Scholarship Council during her study in Rice University. The electron microscopy (S. Z. Y.) was supported in part by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division and through a user proposal supported by ORNL's Center for Nanophase Materials Sciences, which is sponsored by the Scientific User Facilities Division of the U.S. Department of Energy.

Notes and references

- 1 J. Medina-Ramos, R. C. Pupillo, T. P. Keane, J. L. DiMeglio and J. Rosenthal, *J. Am. Chem. Soc.*, 2015, **137**, 5021–5027.
- L. Chen, Z. Guo, X.-G. Wei, C. Gallenkamp, J. Bonin,
 E. Anxolabéhère-Mallart, K.-C. Lau, T.-C. Lau and
 M. Robert, J. Am. Chem. Soc., 2015, 137, 10918–10921.
- 3 C. Costentin, M. Robert and J.-M. Savéant, *Acc. Chem. Res.*, 2015, **48**, 2996–3006.
- 4 J. Shen, R. Kortlever, R. Kas, Y. Y. Birdja, O. Diaz-Morales, Y. Kwon, I. Ledezma-Yanez, K. P. Schouten, G. Mul and M. T. M. Koper, *Nat. Commun.*, 2015, **6**, 8177.
- 5 M. Watanabe, M. Shibata, A. Kato, M. Azuma and T. Sakata, *J. Electrochem. Soc.*, 1991, **138**, 3382–3389.
- 6 M. Ma, K. Djanashvili and W. A. Smith, *Angew. Chem.*, 2016, 128, 6792–6796.
- 7 D. Ren, N. Wong, A. Handoko, Y. Huang and B. Yeo, *J. Phys. Chem. Lett.*, 2016, 7, 20–24.
- 8 S. F. Roberts, K. P. Kuhl and A. Nilsson, *Angew. Chem., Int. Ed.*, 2015, **54**, 5179–5182.
- 9 H. Mistry, A. Varela, C. S. Bonifacio, I. Zegkinoglou, I. Sinev, Y.-W. Choi, K. Kisslinger, E. A. Stach, J. C. Yang, P. Strasser and B. Cuenya, *Nat. Commun.*, 2016, 7, 12123.
- 10 H.-E. Lee, K. Yang, S. Yoon, H.-Y. Ahn, Y. Lee, H. Chang, D. Jeong, Y.-S. Lee, M. Kim and K. Nam, *ACS Nano*, 2015, 9, 8384–8393.
- 11 C. Kim, H. Jeon, T. Eom, M. Jee, H. Kim, C. M. Friend, B. Min and Y. Hwang, *J. Am. Chem. Soc.*, 2015, **137**, 13844–13850.
- 12 J. Rosen, G. S. Hutchings, Q. Lu, S. Rivera, Y. Zhou, D. G. Vlachos and F. Jiao, ACS Catal., 2015, 5, 4293–4299.
- 13 D. Gao, H. Zhou, J. Wang, S. Miao, F. Yang, G. Wang, J. Wang and X. Bao, *J. Am. Chem. Soc.*, 2015, **137**, 4288–4291.
- 14 E. Irtem, T. Andreu, A. Parra, M. D. Hernandez-Alonso, S. Garcia-Rodriguez, J. M. Riesco-Garcia, G. Penelas-Perez and J. R. Morante, *J. Mater. Chem. A*, 2016, 4, 13582–13588.
- 15 F. Lei, W. Liu, Y. Sun, J. Xu, K. Liu, L. Liang, T. Yao, B. Pan, S. Wei and Y. Xie, *Nat. Commun.*, 2016, 7, 12697.
- 16 M. G. Mura, L. D. Luca, G. Giacomelli and A. Porcheddu, *Adv. Synth. Catal.*, 2012, 354, 3180–3186.
- 17 Y. Chen and M. W. Kanan, J. Am. Chem. Soc., 2012, 134, 1986–1989.

- 18 S. Zhang, P. Kang and T. J. Meyer, J. Am. Chem. Soc., 2014, 136, 1734–1737.
- 19 Q. Li, J. Fu, W. Zhu, Z. Chen, B. Shen, L. Wu, Z. Xi, T. Wang, G. Lu, J.-j. Zhu and S. Sun, *J. Am. Chem. Soc.*, 2017, **139**, 4290– 4293.
- 20 G. B. Hoflund and G. R. Corallo, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1992, 46, 7110–7120.
- 21 F. Li, L. Chen, G. P. Knowles, D. R. MacFarlane and J. Zhang, Angew. Chem., Int. Ed., 2017, 56, 505–509.
- 22 Y. Liu, M. Fan, X. Zhang, Q. Zhang, D. Guay and J. Qiao, *Electrochim. Acta*, 2017, **248**, 123–132.
- 23 J. Wu, F. G. Risalvato, S. Ma and X.-D. Zhou, J. Mater. Chem. A, 2014, 2, 1647–1651.
- 24 B. Kumar, V. Atla, P. J. Brian, S. Kumari, T. Nguyen, M. Sunkara and J. M. Spurgeon, *Angew. Chem., Int. Ed.*, 2017, 56, 3645–3649.
- 25 Y. Chen, C. W. Li and M. W. Kanan, J. Am. Chem. Soc., 2012, 134, 19969–19972.
- 26 C. W. Li and M. W. Kanan, J. Am. Chem. Soc., 2012, 134, 7231-7234.
- 27 C. H. Lee and M. W. Kanan, ACS Catal., 2015, 5, 465-469.
- 28 Y. Wang, Y. Liu, J. Zhang, J. Wu, H. Xu, X. Wen, X. Zhang, C. S. Tiwary, W. Yang, R. Vajtai, Y. Zhang, N. Chopra, I. N. Odeh, Y. Wu and P. M. Ajayan, *Sci. Adv.*, 2017, 3, e1701500.
- 29 C. H. Shek, J. K. L. Lai and G. M. Lin, *Nanostruct. Mater.*, 1999, **11**, 887–893.
- 30 S. Fujihara, T. Maeda, H. Ohgi, E. Hosono, H. Imai and S.-H. Kim, *Langmuir*, 2004, 20, 6476–6481.
- 31 J.-J. Zhu, J.-M. Zhu, X.-H. Liao, J.-L. Fang, M.-G. Zhou and H.-Y. Chen, *Mater. Lett.*, 2002, **53**, 12–19.
- 32 J. Zhu, Z. Lu, S. T. Aruna, D. Aurbach and A. Gedanken, *Chem. Mater.*, 2000, **12**, 2557–2566.
- 33 C. Wang, K. Tang, Q. Yang and Y. Qian, *Chem. Phys. Lett.*, 2002, **357**, 371-375.
- 34 R. S. Katiyar, P. Dawson, M. M. Hargreave and G. R. Wilkinson, J. Phys. C: Solid State Phys., 1971, 4, 2421.
- 35 A. Diéguez, A. Romano-Rodríguez, A. Vilà and J. R. Morante, J. Appl. Phys., 2001, 90, 1550–1557.
- 36 S. Axnanda, Z. Zhu, W. Zhou, B. Mao, R. Chang, S. Rani, E. Crumlin, G. Somorjai and Z. Liu, *J. Phys. Chem. C*, 2014, 118, 1935–1943.
- 37 T. J. Whittles, L. A. Burton, J. M. Skelton, A. Walsh, T. D. Veal and V. R. Dhanak, *Chem. Mater.*, 2016, 28, 3718–3726.
- 38 J.-M. Themlin, M. Chtaïb, L. Henrard, P. Lambin, J. Darville and J.-M. Gilles, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1992, **46**, 2460–2466.
- 39 A. R. Babar, S. S. Shinde, A. V. Moholkar, C. H. Bhosale, J. H. Kim and K. Y. Rajpure, *J. Semicond.*, 2011, 32, 053001.
- 40 M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci,
 G. Czempik and J. Szuber, *Thin Solid Films*, 2005, 490, 36–42.
- 41 K. Laajalehto, I. Kartio and P. Nowak, *Appl. Surf. Sci.*, 1994, **81**, 11–15.
- 42 A. A. Audi and P. M. A. Sherwood, *Surf. Interface Anal.*, 2000, **29**, 265–275.
- 43 M. Wahlqvist and A. Shchukarev, J. Electron Spectrosc. Relat. Phenom., 2007, 156, 310–314.

- 44 M. S. Moreno, R. F. Egerton and P. A. Midgley, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 2004, **69**, 233304.
- 45 X. Feng, K. Jiang, S. Fan and M. W. Kanan, *J. Am. Chem. Soc.*, 2015, **137**, 4606–4609.
- 46 C. W. Li, J. Ciston and M. W. Kanan, Nature, 2014, 508, 504.
- 47 R. G. Mariano, K. McKelvey, H. S. White and M. W. Kanan, *Science*, 2017, **358**, 1187.
- 48 K. P. Kuhl, T. Hatsukade, E. R. Cave, D. N. Abram, J. Kibsgaard and T. F. Jaramillo, *J. Am. Chem. Soc.*, 2014, 136, 14107–14113.
- 49 E. R. Cave, J. H. Montoya, K. P. Kuhl, D. N. Abram, T. Hatsukade, C. Shi, C. Hahn, J. K. Norskov and T. F. Jaramillo, *Phys. Chem. Chem. Phys.*, 2017, **19**, 15856– 15863.

- 50 T. Hatsukade, K. P. Kuhl, E. R. Cave, D. N. Abram and T. F. Jaramillo, *Phys. Chem. Chem. Phys.*, 2014, **16**, 13814– 13819.
- 51 R. Kortlever, J. Shen, K. P. Schouten, F. Calle-Vallejo and M. T. M. Koper, *J. Phys. Chem. Lett.*, 2015, 6, 4073–4082.
- 52 Y. Zhang, L. Chen, F. Li, C. D. Easton, J. Li, A. M. Bond and J. Zhang, *ACS Catal.*, 2017, 7, 4846–4853.
- 53 M. F. Baruch, J. E. Pander, J. L. White and A. B. Bocarsly, ACS Catal., 2015, 5, 3148–3156.
- 54 A. Dutta, A. Kuzume, M. Rahaman, S. Vesztergom and P. Broekmann, *ACS Catal.*, 2015, 5, 7498–7502.
- 55 J. Wu, P. P. Sharma, B. H. Harris and X.-D. Zhou, *J. Power Sources*, 2014, **258**, 189–194.
- 56 Y. Wang, J. Zhou, W. Lv, H. Fang and W. Wang, *Appl. Surf. Sci.*, 2016, **362**, 394–398.