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ABSTRACT: Cost competitive electroreduction of CO2 to CO requires
electrochemical systems that exhibit partial current density (jCO)
exceeding 150 mA cm−2 at cell overpotentials (|ηcell|) less than 1 V.
However, achieving such benchmarks remains difficult. Here, we report
the electroreduction of CO2 on a supported gold catalyst in an alkaline
flow electrolyzer with performance levels close to the economic viability
criteria. Onset of CO production occurred at cell and cathode
overpotentials of just −0.25 and −0.02 V, respectively. High jCO (∼99,
158 mA cm−2) was obtained at low |ηcell| (∼0.70, 0.94 V) and high CO
energetic efficiency (∼63.8, 49.4%). The performance was stable for at
least 8 h. Additionally, the onset cathode potentials, kinetic isotope
effect, and Tafel slopes indicate the low overpotential production of CO
in alkaline media to be the result of a pH-independent rate-determining
step (i.e., electron transfer) in contrast to a pH-dependent overall process.

Carbon dioxide (CO2) levels in the earth’s atmosphere
has been on a constant rise in the past few decades,
with the daily average value exceeding and staying

above the 400 ppm mark in 2016 for the first time in recorded
human history.1 This rise in atmospheric CO2 levels has been
correlated to the increase in global mean temperature
anomalies and the associated climate change effects.2 Thus,
developing cost-effective technologies that can mitigate,
capture, or utilize excess anthropogenic CO2 emissions
remains a grand challenge for the 21st century.3 The
electroreduction of CO2 to value added C1−C2 chemicals
[e.g., formic acid (HCOOH), carbon monoxide (CO),
methanol, ethanol, ethylene, etc.] using renewable energy
could be one approach for utilizing and reducing the excess
CO2 emissions.4,5 However, prior technoeconomic analysis
suggests that out of the myriad of C1−C2 chemicals that can be
obtained via the electroreduction of CO2, producing CO and
HCOOH seems to be the most viable as the process can

become cost competitive with the existing industrial methods
to manufacture the same.6,7

Starting with the early work of Hori et al.,8,9 many studies
have focused on the development of active, selective, and
stable catalysts as well as electrolytes for the electroreduction
of CO2.

10−12 In particular, for the electroreduction of CO2 to
CO, gold (Au)13−17 and silver (Ag)18−23 have been shown to
be two of the most active catalytic materials. Yet, even after
almost two decades of research, achieving high levels of activity
[partial current density for CO (jCO) > 150 mA cm−2] at low
cell overpotentials (|ηcell| < 1 V), a criterion required for the
economic viability of the CO2 electroreduction process,6,24

remains challenging.25 Such a behavior can primarily be
attributed to a combination of (1) low solubility of CO2 in
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aqueous solutions (∼35 mM at 298 K and 1 atm pressure)26

causing mass transport limitations when using dissolved CO2
as the reactant and (2) a high activation barrier associated with
the formation of the rate-determining CO2

− radical.27,28 While
the use of gas diffusion layer (GDL) electrode-based flow
electrolyzers could be a reactor engineering approach to
circumvent CO2 mass transport limitations by supplying a
continuous CO2 stream at the electrode−electrolyte inter-
face,29,30 electrolyte engineering approaches such as the use of
imidazolium-based ionic liquids,31 large cations,32,33 and
alkaline media are alternative methods to lower overpotentials
and improve activity.34,35 However, the mechanism behind the
beneficial effects of such electrolytes (especially alkaline
media/high pH) is still poorly understood.
In this work, we report the active, selective, and stable

electroreduction of CO2 to CO using Au nanoparticles
supported on poly(2,2′-(2,6-pyridine)-5,5′-bibenzimidazole)
polymer (PyPBI) wrapped multiwall carbon nanotubes
(MWNTs) as the cathode catalyst (MWNT/PyPBI/Au).
The MWNT/PyPBI/Au catalyst was further utilized to provide
new insights into the reaction mechanism and durability of
CO2 electroreduction at high electrolyte pH. Previously, we
reported similar catalysts, i.e., platinum (diameter < 5 nm)36,37

and Au nanoparticles (diameter 1−20 nm),38 supported on
PyPBI wrapped MWNTs for the oxygen (O2) and CO2
electroreduction reactions, respectively. Because catalyst nano-
particle size is known to affect the electroreduction of CO2 to
CO, with a dramatic enhancement in the mass activity being
observed when using Ag or Au nanoparticles with diameter less
than 10 nm,16,17,23 we refined our synthesis method (i.e.,
lowered the target Au loading on the MWNT/PyPBI support
from ∼50% by weight in ref 38 to ∼15% by weight in this
work)39 to deposit 3.4 ± 1.3 nm Au nanoparticles on the
PyPBI wrapped MWNT support (Figure 1a,b). The actual Au

content in MWNT/PyPBI/Au was found to be ∼18% by
weight (Figure 1c). The MWNT/PyPBI/Au catalyst was then
deposited onto a GDL via an automated airbrush method,40

with a final loading of 1.0 ± 0.1 mg cm−2 (Au ∼ 0.18
mg cm−2). The electrochemical characterization of the
MWNT/PyPBI/Au coated GDL was performed in a flow
electrolyzer (Figure S1),29 with a CO2 flow rate (FCO2

) of 17
sccm and an electrolyte flow rate of 0.5 mL min−1. The
cathodic CO2 electroreduction was coupled to the anodic O2
evolution on an iridium oxide (IrO2) coated GDL to lower
|ηcell|.

41

The MWNT/PyPBI/Au cathode in combination with the
IrO2 anode and 2.0 M KOH electrolyte shows an onset cell,
cathode potential of just −1.50 V (ηcell ∼ −0.25 V) and −0.04
V vs RHE [cathode overpotential (ηcathode) ∼ −0.02 V],
respectively, for the electroreduction of CO2 to CO (Figure
2a,b; see section S2.2, Table S1 for ηcell and ηcathode
calculations). The onset potential (cell or cathode) is defined
as the least negative potential (cell or cathode) at which CO is
first observed in the gas chromatograph with a signal-to-noise
ratio greater than 3. The electrochemical system also exhibits
high activity at low cell and cathode potentials with jCO as high
as, for example, 99 and 158 mA cm−2 being obtained at a cell
potential of only −2.00 and −2.25 V, and a cathode potential
of just −0.42 and −0.55 V vs RHE (Figure 2b). The values
correspond to a high mass activity for CO (548.8 and 877.5
A gAu

−1) at high energetic efficiencies (63.8 and 49.4%) (Table
1). The MWNT/PyPBI/Au catalyst exhibits a 2−5× improve-
ment in total current density (jTotal) and 3.5−7× improvement
in jCO over commercially available surfactant free Au
nanoparticles (size, <100 nm; loading = 0.18 ± 0.02 mg cm−2)
(Figure 2a,b). Meanwhile, the MWNT/PyPBI support
(loading = 1.0 ± 0.01 mg cm−2) does not show any activity
toward CO production (Figure 2b). The improved perform-
ance can be attributed to a combination of (i) small Au
particles with a narrow size distribution, (ii) high electro-
chemically active surface area of the MWNT/PyPBI/Au
catalyst due to the unique ability of the pyridine-containing
PyPBI to provide nucleation sites for the deposition and
growth of the Au nanoparticles, as well as (iii) high electrical
conductivity of the MWNT support.16,17,23,36−38 To the best of
our knowledge, these results represent the lowest onset cell
and cathode potential along with some of the highest jCO, mass
activity at low cell and cathode potentials for the electro-
reduction of CO2 to CO (see Figure S2 for a comparison with
the literature).
Electrolyte (KOH) concentration was found to play a crucial

role in the process with a 1.5−2× improvement in jCO being
observed when moving from 1.0 to 2.0 M KOH (Figure 2c).
However, the improvement in jCO on further increasing the
concentration to 3.0 M KOH was less significant, especially at
cathode potentials > −0.7 V vs RHE. The electrolyte anion/
pH was found to be important as well with a less negative
onset cathode potential (hence low |ηcathode|) and a higher jCO
at low |ηcathode| being observed when using KOH in
comparison to K2CO3, KHCO3, or KCl (Figure 2d and
Table 2). Previously, we demonstrated a similar lowering of
|ηcathode| and an improvement in jCO on increasing the
electrolyte pH and changing the anion from Cl− to HCO3

−

and OH−, for CO2 electroreduction on Ag nanoparticle coated
GDLs.33−35 The results were rationalized on the basis of (1)
slower kinetics of the parasitic H2 evolution reaction at high

Figure 1. (a) Representative transmission electron microscopy
image, (b) size histogram (100 particles), and (c) thermogravi-
metric analysis (10 °C minute−1 in air) for the as-synthesized
MWNT/PyPBI/Au catalyst.
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pH35,42 and (2) the ability of anions (Cl−, sulfonates, etc.) to
specifically adsorb to the catalytic Ag surface and destabilize

the rate-determining CO2
− radical.34 While the improvement

in jCO at low |ηcathode| in the case of the MWNT/PyPBI/Au
catalyst with a KOH electrolyte can still be explained by
inhibited H2 evolution in alkaline media, the shift in onset
potential for CO is hard to explain using the specific anion
adsorption effect. This is because the potential of zero charge
(pzc) for Au (∼0.2 V vs SHE) is much more positive than that
for Ag (−0.5 to −0.8 V vs SHE)43 as well as the operating
potentials for CO2 electroreduction (cathode potentials < −0.8
V vs SHE, Table 2), suggesting that specific anion adsorption
might be relevant for Ag but should not be a factor for Au.
A closer look at the onset cathode potentials for CO

production on MWNT/PyPBI/Au (this work) and Ag
nanoparticles (from the literature)34 shows that for a given
catalytic material, the values were similar for all the
electrolytes/pH versus SHE but different versus RHE (Table
2). Note that the onset cathode potentials were nearly identical
with or without iR correction (Table S1 in the Supporting
Information). Revisiting the potential (E)−pH (Pourbaix)
diagrams for elementary electrochemical steps, i.e., electron
transfer and concerted proton electron transfer (Figures S3),
indicates that the potential remaining constant on the SHE
scale irrespective of pH is the characteristic of an electron-
transfer step.44,45 As the onset potential for a product is
determined by the rate-determining step (rds), we hypothesize
that the rds for the electroreduction of CO2 to CO should be
electron transfer in contrast to the commonly assumed
concerted proton electron transfer for computational (density
functional theory) studies of CO2 electroreduction.46 To
further verify our hypothesis, we performed a kinetic isotope
effect study (section S2.6). If protons were involved in the rds,
then differences in activity for CO production should be
observed when using protonated versus deuterated electro-
lytes.47−50 However, the Tafel plots for CO formation in both
the protonated and deuterated electrolytes were found to be

Figure 2. (a) Total current density (jTotal) and (b) partial current density for CO (jCO) as a function of the cell, cathode potential when using
MWNT/PyPBI/Au, MWNT/PyPBI, and commercially available Au nanoparticles (Au NP) as the cathode catalyst (electrolyte: 2.0 M KOH),
as well as jCO as a function of the cathode potential for the MWNT/PyPBI/Au cathode catalyst when using (c) three different concentrations
of KOH and (d) 2.0 M KOH, K2CO3, KHCO3, KCl as the electrolyte. Anode is IrO2.

Table 1. Cathode Potential, Faradaic Efficiency (FECO),
Mass Activity, and Energetic Efficiency (EECO) for the
Electroreduction of CO2 to CO on a MWNT/PyPBI/Au
Cathode Catalyst, at Different Cell Potentialsa

cell
potential
(V)

cathode
potential

(V vs RHE)

Faradaic
efficiency

(FECO) (%)

mass activity
for CO
(A gAu

−1)

energetic
efficiency

(EECO) (%)

−1.50 −0.04 73.8 9.6 61.4
−1.60 −0.13 92.4 42.5 73.2
−1.70 −0.22 98.3 123.2 74.1
−1.80 −0.29 98.2 251.0 70.4
−2.00 −0.42 98.2 548.8 63.8
−2.25 −0.55 85.0 877.5 49.4
−2.50 −0.72 63.6 1127.5 33.3

aAnode, IrO2; electrolyte, 2.0 M KOH. See section S2.3 for EECO
calculations.

Table 2. Onset Cathode Potential for the Electroreduction
of CO2 to CO, when Using Ag Nanoparticles; MWNT/
PyPBI/Au as the Cathode Catalyst; and 2.0 M KOH,
K2CO3, KHCO3, or KCl as the Electrolyte (Anode: IrO2)

onset cathode potential for CO (V)

Ag nanoparticles34 MWNT/PyPBI/Au

electrolyte pH vs RHE vs SHE vs RHE vs SHE

2.0 M KOH 13.77 −0.13 −0.94 −0.04 −0.84
2.0 M K2CO3 12.53 −0.23a −0.97a −0.12 −0.85
2.0 M KHCO3 8.59 −0.46 −0.97 −0.35 −0.85
2.0 M KCl 6.54 −0.60 −0.99 −0.46 −0.84

aValues originally not reported in ref 34 but acquired for this work
under identical experimental conditions to complete the data set.
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nearly identical (Figure S4), indicating that protons are not
involved in the rds. Hence, electron transfer should indeed be
the rate-determining step.
The elementary steps describing the electroreduction of

CO2 to CO on transition-metal surfaces under neutral to
alkaline pH can be written as follows:8,51

+ + [*] →− −CO e CO (ads)2 2 (1)

+ → +− −CO (ads) H O COOH(ads) OH2 2 (2)

+ →− −COOH(ads) e COOH (ads) (3)

→ +− −COOH (ads) CO(ads) OH (4)

→ + [*]CO(ads) CO(g) (5)

where [*] denotes an active site. Of the 5 steps, only eqs 1 and
3 represent an electron-transfer step. If eq 1 or 3 were the rds,
the Tafel slope should be 116 and 39 mV decade−1,
respectively (section S2.7). The Tafel slopes for all the
electrolytes studied in this work were between 115 and 133
mV decade−1 in the kinetically controlled regime (Figure 3a),
indicating the rate-determining step to be eq 1. In contrast, the
overall electroreduction of CO2 to CO is pH-dependent,
resulting in a lower |ηcathode| and hence a positive shift in onset
potentials at high pH (Figure 3b). Note, that the equilibrium
potential associated with eq 1, i.e., the formation of CO2

−(ads)
(−1.9 V vs SHE)27 is much more negative than the onset

potential of −0.84 to −0.85 V vs SHE and −0.94 to −0.99 V vs
SHE for CO production on MWNT/PyPBI/Au and Ag
nanoparticles, respectively. The large difference can be
interpreted according to a hypothesis originally proposed by
Hori and co-workers, i.e., the stabilization of CO2

−(ads) on
transition metals is possible at potentials more positive than
−1.9 V vs SHE because of the back-donation of electrons from
the highest occupied d orbital of the metallic catalyst to the
lowest unoccupied antibonding orbital of CO2

−(ads).8,9

Different materials can facilitate this back-donation to a
different extent, thus determining their catalytic properties.
Interestingly, we do observe this phenomenon in our
experiments in terms of a different onset potential for CO
production on MWNT/PyPBI/Au (more positive value, hence
better catalyst) in comparison to Ag nanoparticles (Table 2
and Figure 3b).
Next, we investigated the durability of the MWNT/PyPBI/

Au coated GDL using a 2.0 M KOH electrolyte and an IrO2
anode in a flow electrolyzer. Electrochemical experiments were
performed at a constant cathode potential of −1.45 V vs Ag/
AgCl (−0.44 V vs RHE) for 8 h to achieve realistic operating
conditions of jCO > 100 mA cm−2 and FECO > 90%. During
preliminary experiments using FCO2

= 17 sccm, we observed
electrolyte flooding through the GDL leading to blockage of
the CO2 feed line due to carbonate precipitation (demon-
strated by sharp fluctuations in jTotal in Figure S5a and visible
precipitates in Figure S5b). Increasing FCO2

to 75 sccm
eliminated this problem as evidenced by the absence of sharp
jTotal fluctuations (Figure S5). The result can be attributed to a
better pressure balance at the gas−electrode−electrolyte
interface. However, at the end of the experiment, traces of
carbonate precipitate (that can impede the transport of CO2
and electrons to the catalytic sites) were observed on the
macroporous layer of the GDL. Hence, to avoid degradation
effects related to electrolyte flooding and carbonate precip-
itation, and thus truly assess the durability of the MWNT/
PyPBI/Au coated GDL, we repeated the experiment at FCO2

=
75 sccm with a wash of the macroporous layer of the GDL with
deionized (DI) water at intervals of 2.5 h. The electrochemical
system showed considerable durability during the test, with
FECO remaining nearly constant over the 8 h period (Figure
4a). jTotal was relatively stable with the value changing from
∼111 mA cm−2 at the end of 1 h to ∼103 mA cm−2 at the end
of 8 h (∼7% drop). Interestingly, the FECO improved from
86% to 90% after the first wash of the GDL with DI water
(Figure 4a), indicating that carbonate precipitation indeed
affects electrochemical performance. The MWNT/PyPBI/Au
catalyst (final Au size = 3.6 ± 1.4 nm) was also stable during
the 8 h run (Figure 4b,c).
In summary, we have shown that an electrochemical system

comprising a MWNT/PyPBI/Au-coated GDL cathode, IrO2-
coated GDL anode, and 2.0 M KOH electrolyte exhibits high
activity for the electroreduction of CO2 to CO at low
overpotentials. Specifically, the electrochemical system exhibits
an onset cell potential of just −1.50 V, an onset cathode
potential of just −0.04 V vs RHE, and jCO as high as 99 and
158 mA cm−2 at corresponding energetic efficiencies for CO of
63.8 and 49.4%. The electrochemical system also showed
considerable durability over 8 h. While the results reported
here seem promising, future work should focus on extending
the durability of the electrochemical system to >3000 h if one
were to demonstrate true industrial relevance. An issue of

Figure 3. (a) Tafel slopes for the electroreduction of CO2 to CO
when using 2.0 M KOH, K2CO3, KHCO3, or KCl as the electrolyte.
Cathode, MWNT/PyPBI/Au; anode, IrO2. (b) E−pH (Pourbaix)
diagram for the electroreduction of CO2 to CO depicting pH
independence of the onset cathode potentials [hence, rate-
determining step (rds)] vs pH dependence of the overall process.
Note, rds MWNT/PyPBI/Au and rds Ag NP denote the rate-
determining step for the MWNT/PyPBI/Au and Ag nanoparticle
catalyst, respectively.
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special concern would be developing methods that can
eliminate carbonate formation and/or regenerate the spent
electrolyte in alkaline CO2 electroreduction systems. Possible
solutions include but are not limited to (i) utilizing an anion
exchange membrane electrolyzer or (ii) reacting the formed
potassium carbonate with slaked lime (Ca(OH)2) to
regenerate the KOH in solution and precipitate out calcium
carbonate. However, additional technoeconomic analyses need
to be performed to understand the cost effectiveness and
energy efficiency of such proposed systems. From a
fundamental reaction mechanism perspective, we used a
combination of the onset cathode potential data, kinetic
isotope effect, and Tafel slopes to show that the rate-
determining step for the electroreduction of CO2 to CO is a
pH-independent electron-transfer step involving the formation
of the adsorbed CO2

− radical. As a result, increasing electrolyte
pH might be an effective way of lowering the high |ηcathode|
requirement.
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